Comparison of several muscle modeling alternatives for computationally intensive algorithms in human motion dynamics. (English) Zbl 07532732

Summary: Several approaches are currently employed to address the predictive simulation of human motion, having in common their high computational demand. Muscle modeling seems to be an essential ingredient to provide human likeness to the obtained movements, at least for some activities, but it increases even more the computational load. This paper studies the efficiency and accuracy yielded by several alternatives of muscle modeling in the forward-dynamics analysis of captured motions, as a method that encompasses the computationally intensive character of predictive simulation algorithms with a known resulting motion which simplifies the comparisons. Four muscle models, the number of muscles, muscle torque generators, muscular synergies, and look-up tables for musculotendon lengths and moment arms are considered and analyzed, seeking to provide criteria on how to include the muscular component in human multibody models so that its effect on the resulting motion is captured while keeping a reasonable computational cost. Gait and vertical jump are considered as examples of slow- and fast-dynamics motions. Results suggest that: (i) the rigid-tendon model with activation dynamics offers a good balance between accuracy and efficiency, especially for short-tendon muscles; (ii) including muscles in the model leads to a decrease in efficiency which is highly dependent on the muscle model employed and the number of muscles considered; (iii) muscle torque generators keep the efficiency of skeletal models; (iv) muscular synergies offer almost no advantage for this problem; and (v) look-up tables for configuration-dependent kinematic magnitudes have a non-negligible impact on the efficiency, especially for simplified muscle models.


70E55 Dynamics of multibody systems


Full Text: DOI


[1] Ezati, M.; Ghannadi, B.; McPhee, J., A review of simulation methods for human movement dynamics with emphasis on gait, Multibody Syst. Dyn., 47, 3, 265-292 (2019) · Zbl 1423.70004
[2] De Groote, F.; Falisse, A., Perspective on musculoskeletal modelling and predictive simulations of human movement to assess the neuromechanics of gait, Proc. R. Soc. Edinb., Sect. B, 288 (2021)
[3] Ackermann, M.; van den Bogert, A. J., Optimality principles for model-based prediction of human gait, J. Biomech., 43, 1055-1060 (2010)
[4] Manns, P.; Sreenivasa, M.; Millard, M.; Mombaur, K., Motion optimization and parameter identification for a human and lower back exoskeleton model, IEEE Robot. Autom. Lett., 2, 3, 1564-1570 (2017)
[5] Eskinazi, I.; Fregly, B. J., A computational framework for simultaneous estimation of muscle and joint contact forces and body motion using optimization and surrogate modeling, Med. Eng. Phys., 54, 56-64 (2018)
[6] Lin, Y.-C.; Walter, J. P.; Pandy, M. G., Predictive simulations of neuromuscular coordination and joint-contact loading in human gait, Ann. Biomed. Eng., 46, 1216-1227 (2018)
[7] Eisentraudt, M.; Leyendecker, S., Epistemic uncertainty in optimal control simulation, Mechanical Systems and Signal Processing, 876-889 (2019)
[8] Falisse, A.; Serrancoli, G.; Dembia, C. L.; Gillis, J.; Jonkers, I.; De Groote, F., Rapid predictive simulations with complex musculoskeletal models suggest that diverse healthy and pathological human gaits can emerge from similar control strategies, J. R. Soc. Interface, 16 (2019)
[9] Inkol, K. A.; Brown, C.; McNally, W.; Jansen, C.; McPhee, J., Muscle torque generators in multibody dynamic simulations of optimal sports performance, Multibody Syst. Dyn., 50, 4, 435-452 (2020) · Zbl 1457.70016
[10] Dembia, C. L.; Bianco, N. A.; Falisse, A.; Hicks, J. L.; Delp, S. L., OpenSim Moco: musculoskeletal optimal control, PLoS Comput. Biol., 16, 12 (2020)
[11] Wang, J. M.; Hamner, S. R.; Delp, S. L.; Koltun, V., Optimizing locomotion controllers using biologically-based actuators and objectives, ACM Trans. Graph., 31, 4 (2012)
[12] Geijtenbeek, T.; van de Panne, M.; van der Stappen, F., Flexible muscle-based locomotion for bipedal creatures, ACM Trans. Graph., 32, 6, 1-11 (2013)
[13] Song, S.; Geyer, H., A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion, J. Physiol., 593, 16, 3493-3511 (2015)
[14] Van der Noot, N.; Ijspeert, A. J.; Ronsse, R., Bio-inspired controller achieving forward speed modulation with a 3D bipedal walker, Int. J. Robot. Res., 37, 168-196 (2018)
[15] Geijtenbeek, T., SCONE: open source software for predictive simulation of biological motion, J. Open Sour. Softw., 4, 38, 1421 (2019)
[16] Hämäläinen, P.; Eriksson, S.; Tanskanen, E.; Kyrki, V.; Lehtinen, J., Online motion synthesis using sequential Monte Carlo, ACM Trans. Graph., 33, 4 (2014)
[17] Lee, S.; Park, M.; Lee, K.; Lee, J., Scalable muscle-actuated human simulation and control, ACM Trans. Graph., 38, 4, 1-13 (2019)
[18] De Groote, F.; Kinney, A. L.; Rao, A. V.; Fregly, B. J., Evaluation of direct collocation optimal control problem formulations for solving the muscle redundancy problem, Ann. Biomed. Eng., 44, 10, 2922-2936 (2016)
[19] Dorschky, E.; Nitschke, M.; Seifer, A. K.; van den Bogert, A. J.; Eskofier, B. M., Estimation of gait kinematics and kinetics from inertial sensor data using optimal control of musculoskeletal models, J. Biomech., 95 (2019)
[20] Millard, M.; Uchida, T.; Seth, A.; Delp, S., Flexing computational muscle: modeling and simulation of musculotendon dynamics, J. Biomech. Eng., 135, 2 (2013)
[21] Michaud, F.; Lamas, M.; Lugris, U.; Cuadrado, J., A fair and EMG-validated comparison of recruitment criteria, musculotendon models and muscle coordination strategies, for the inverse-dynamics based optimization of muscle forces during gait, J. NeuroEng. Rehabil., 18 (2021)
[22] Sobinov, A.; Boots, M. T.; Gritsenko, V.; Fisher, L. E.; Gaunt, R. A.; Yakovenko, S., Approximating complex musculoskeletal biomechanics using multidimensional autogenerating polynomials, PLoS Comput. Biol., 16, 12 (2020)
[23] Mouzo, F.; Lugris, U.; Pamies-Vila, R.; Cuadrado, J., Skeletal-level control-based forward dynamic analysis of acquired healthy and assisted gait motion, Multibody Syst. Dyn., 44, 1, 1-29 (2018) · Zbl 1435.70009
[24] Thelen, D. G.; Anderson, F. C., Using computed muscle control to generate forward dynamic simulations of human walking from experimental data, J. Biomech., 39, 1107-1115 (2006)
[25] Cuadrado, J.; Dopico, D.; Gonzalez, M.; Naya, M. A., A combined penalty and recursive real-time formulation for multibody dynamics, J. Mech. Des., 126, 4, 602-608 (2004)
[26] Cuadrado, J.; Michaud, F.; Lugrís, U.; Perez Soto, M., Using accelerometer data to tune the parameters of an extended Kalman filter for optical motion capture: preliminary application to gait analysis, Sensors, 21, 2 (2021)
[27] Garcia de Jalon, J.; Bayo, E., Kinematic and dynamic simulation of multibody systems (1994), Berlin: Springer, Berlin
[28] Dopico, D.: MBSLIM: multibody systems en laboratorio de ingenieria mecanica (2016). http://lim.ii.udc.es/MBSLIM
[29] Lugris, U.; Carlin, J.; Luaces, A.; Cuadrado, J., Gait analysis system for spinal cord injured subjects assisted by active orthoses and crutches, J. Multi-Body Dyn., 227, 4, 363-374 (2013)
[30] Michaud, F.; Lamas, M.; Lugris, U.; Cuadrado, J., A fair and EMG-validated comparison of recruitment criteria, musculotendon models and muscle coordination strategies, for the inverse-dynamics based optimization of muscle forces during gait, J. NeuroEng. Rehabil., 18 (2021)
[31] Romero, F.; Alonso, F. J.; Gragera, C.; Lugris, U.; Font-Llagunes, J. M., Estimation of muscular forces from SSA smoothed sEMG signals calibrated by inverse dynamics-based physiological static optimization, J. Braz. Soc. Mech. Sci. Eng., 38, 8, 2213-2223 (2016)
[32] Delp, S. L.; Anderson, F. C.; Arnold, A. S.; Loan, P.; Habib, A.; John, C. T.; Guendelman, E.; Thelen, D. G., OpenSim: open-source software to create and analyze dynamic simulations of movement, IEEE Trans. Biomed. Eng., 54, 11, 1940-1950 (2007)
[33] Zajac, F. E., Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control, Crit. Rev. Biomed. Eng., 17, 4, 359-411 (1989)
[34] Michaud, F.: Neuromusculoskeletal human multibody models for the gait of healthy and spinal-cord-injured subjects. PhD Dissertation, University of La Coruña, Ferrol (2020)
[35] Anderson, D. E.; Madigan, M. L.; Nussbaum, M. A., Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb, J. Biomech., 40, 14, 3105-3113 (2007)
[36] Scholz, A.; Sherman, M.; Stavness, I.; Delp, S.; Kecskemethy, A., A fast multi-obstacle muscle wrapping method using natural geodesic variations, Multibody Syst. Dyn., 36, 2, 195-219 (2016) · Zbl 1333.92013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.