×

Statistical modeling for practical pooled testing during the COVID-19 pandemic. (English) Zbl 07535201

Summary: Pooled testing offers an efficient solution to the unprecedented testing demands of the COVID-19 pandemic, despite their potentially lower sensitivity and increased costs to implementation in certain settings. Assessments of this trade-off typically assume the underlying infection statuses of pooled specimens to be independent and identically distributed. Yet, in the context of COVID-19, these assumptions are often violated: testing done on networks (housemates, spouses, co-workers) captures individuals with correlated infection statuses and risk, while infection risk varies substantially across time, place and individuals. Neglecting dependencies and heterogeneity may bias established optimality grids and induce a sub-optimal implementation of the procedure. As a lesson learned from this pandemic, this paper highlights the necessity of integrating field sampling information with statistical modeling to efficiently optimize pooled testing. Using real data, we show that (a) greater gains can be achieved at low logistical cost by exploiting natural correlations (nonindependence) between samples – allowing improvements in sensitivity and efficiency of up to 30% and 90%, respectively; and (b) these gains are robust despite substantial heterogeneity across pools (nonidentical). Our modeling results complement and extend the observations of N. Barak et al. [“Lessons from applied large-scale pooling of 133,816 SARS-CoV-2 RT-PCR tests”, Sci. Transl. Med. 13, No. 538, 7 p. (2021; doi:10.1126/scitranslmed.abf2823)] who report an empirical sensitivity well beyond expectations. Finally, we provide an interactive tool for selecting an optimal pool size using contextual information.

MSC:

62-XX Statistics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] ABDALHAMID, B., BILDER, C. R., MCCUTCHEN, E. L., HINRICHS, S. H., KOEPSELL, S. A. and IWEN, P. C. (2020). Assessment of specimen pooling to conserve SARS CoV-2 testing resources. Am. J. Clin. Pathol. 153 715-718.
[2] ADAM, D. C., WU, P., WONG, J. Y., LAU, E. H. Y., TSANG, T. K., CAUCHEMEZ, S., LEUNG, G. M. and COWLING, B. J. (2020). Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. Nat. Med. 26 1714-1719.
[3] ASM (2021). Supply Shortages Impacting COVID-19 and Non-COVID Testing. [Online; posted 19-January-2021].
[4] BARAK, N., AMI, R. B., SIDO, T., PERRI, A., SHTOYER, A., RIVKIN, M., LICHT, T., PERETZ, A., MAGENHEIM, J. et al. (2021). Lessons from applied large-scale pooling of 133,816 SARS-CoV-2 RT-PCR tests. Sci. Transl. Med. 13 1-8.
[5] BERKE, E. M., NEWMAN, L. M., JEMSBY, S., HYDE, B., BHALLA, N., SHEILS, N. E., OOMMAN, N., REPPAS, J., VERMA, P. et al. (2021). Pooling in a pod: A strategy for COVID-19 testing to facilitate a safe return to school. Public Health Reports 136 663-670.
[6] BILDER, C. R. and TEBBS, J. M. (2012). Pooled-testing procedures for screening high volume clinical specimens in heterogeneous populations. Stat. Med. 31 3261-3268.
[7] BILDER, C. R., TEBBS, J. M. and CHEN, P. (2010). Informative retesting. J. Amer. Statist. Assoc. 105 942-955. · Zbl 1390.62236
[8] BILDER, C. R., TEBBS, J. M. and MCMAHAN, C. S. (2019). Informative group testing for multiplex assays. Biometrics 75 278-288. · Zbl 1436.62515
[9] CAPS (2020). Pooled Testing: Guidance from the CAP’s Microbiology Committee. Available at www.cap.org/covid-19/pooled-testing-guidance-from-cap-microbiology-committee. Accessed: 2021-01-06.
[10] CAVE, E. (2020). COVID-19 super-spreaders: Definitional quandaries and implications. Asian Bioethics Review 1.
[11] CENSUS. GOV (2021). State Population Totals and Components of Change: 2010-2019. Available at www.census.gov/data/tables/time-series/demo/popest/2010s-state-total.html.
[12] CHEN, P., TEBBS, J. M. and BILDER, C. R. (2009). Group testing regression models with fixed and random effects. Biometrics 65 1270-1278. · Zbl 1180.62160
[13] CHITWOOD, M. H., RUSSI, M., GUNASEKERA, K., HAVUMAKI, J., KLAASSEN, F., PITZER, V. E., SALOMON, J. A., SWARTWOOD, N. A., WARREN, J. L. et al. (2021). Reconstructing the course of the COVID-19 epidemic over 2020 for US states and counties: Results of a Bayesian evidence synthesis model. MedRxiv.
[14] CIRILLO, P. and TALEB, N. N. (2020). Tail risk of contagious diseases. Nat. Phys. 16 606-613.
[15] COLLINS, K. (2020). Is Your State Doing Enough Coronavirus Testing? Available at www.nytimes.com/interactive/2020/us/coronavirus-testing.html. [Online; posted 1-November-2020].
[16] COMESS, S., WANG, H., HOLMES, S. and DONNAT, C. (2022). Supplement to “Statistical Modeling for Practical Pooled Testing During the COVID-19 Pandemic.” https://doi.org/10.1214/22-STS857SUPP
[17] CRAMER, E. Y., LOPEZ, V. K., NIEMI, J., GEORGE, G. E., CEGAN, J. C., DETTWILLER, I. D., ENGLAND, W. P., FARTHING, M. W., HUNTER, R. H. et al. (2021). Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the US. MedRxiv 2021.02.03.21250974.
[18] CURMEI, M., ILYAS, A., EVANS, O. and STEINHARDT, J. (2020). Estimating household transmission of SARS-CoV-2. medRxiv 1-24.
[19] DECKERT, A., BÄRNIGHAUSEN, T. and KYEI, N. N. (2020). Simulation of pooled-sample analysis strategies for COVID-19 mass testing. Bull. World Health Organ. 98 590-598.
[20] DHILLON, R. S., SRIKRISHNA, D., GARRY, R. F. and CHOWELL, G. (2015). Ebola control: Rapid diagnostic testing. Lancet Infect. Dis. 15 147-148.
[21] DONNAT, C. and HOLMES, S. (2021). Modeling the heterogeneity in COVID-19’s reproductive number and its impact on predictive scenarios. J. Appl. Stat. 1-29.
[22] DONNAT, C., MIOLANE, N., BUNBURY, F. and KREINDLER, J. (2020). A Bayesian Hierarchical Network for Combining Heterogeneous Data Sources in Medical Diagnoses. Available at arXiv:2007.13847.
[23] DONNAT, C., BUNBURY, F., KREINDLER, J., FILIPPIDIS, F. T., EL-OSTA, A., ESKO, T. and HARRIS, M. (2021). A Predictive Modelling Framework for COVID-19 Transmission to Inform the Management of Mass Events. MedRxiv 2021.05.13.21256857.
[24] DORFMAN, R. (1943). The detection of defective members of large populations. Ann. Math. Stat. 14 436-440.
[25] EUNJUNG CHA, A. (2021). The future of coronavirus testing is in Greenville, N.C. Available at www.washingtonpost.com/health/2021/04/28/new-coronavirus-testing-strategy-home-kits/. [Online; posted 28-April-2021].
[26] FDA (2020). Coronavirus (COVID-19) Update: FDA Issues First Emergency Authorization for Sample Pooling in Diagnostic Testing. Available at www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-issues-first-emergency-authorization-sample-pooling-diagnostic. [Online; posted 18-July-2020].
[27] FRAYER, L. (2021). Oxygen Rationing, Test Shortages: India Caught Unprepared In COVID-19 Crisis. Available at www.npr.org/2021/04/24/990544555/oxygen-rationing-test-shortages-india-caught-unprepared-in-covid-19-crisis. [Online; posted 24-April-2021].
[28] GANDHI, M., YOKOE, D. S. and HAVLIR, D. V. (2020). Asymptomatic transmission, the Achilles’ heel of current strategies to control COVID-19. N. Engl. J. Med. 382 36-39.
[29] GASTWIRTH, J. L. (2000). The efficiency of pooling in the detection of rare mutations. Am. J. Hum. Genet. 67 1036-1039.
[30] GAYDOS, C. A. (2005). Nucleic acid amplification tests for gonorrhea and chlamydia: Practice and applications. Infectious Disease Clinics 19 367-386.
[31] GIRI, B., PANDEY, S., SHRESTHA, R., POKHAREL, K., LIGLER, F. S. and NEUPANE, B. B. (2021). Review of analytical performance of COVID-19 detection methods. Anal. Bioanal. Chem. 413 35-48.
[32] GÓMEZ-CARBALLA, A., BELLO, X., PARDO-SECO, J., MARTINÓN-TORRES, F. and SALAS, A. (2020). Mapping genome variation of SARS-CoV-2 worldwide highlights the impact of COVID-19 super-spreaders. Genome Res. 30 1434-1448.
[33] HE, J., GUO, Y., MAO, R. and ZHANG, J. (2020). Proportion of asymptomatic coronavirus disease 2019: A systematic review and meta-analysis. Journal of Medical Virology.
[34] HEILWEIL, R. (2021). How omicron broke Covid-19 testing. Available at www.vox.com/recode/2021/12/21/22848286/omicron-rapid-test-covid-19-antigen. [Online; posted 21 December 2021].
[35] JOACHIM, A., DEWALD, F., SUÁREZ, I., ZEMLIN, M., LANG, I., STUTZ, R., MARTHALER, A., BOSSE, H. M., LÜBKE, N. et al. (2021). Pooled RT-qPCR testing for SARS-CoV-2 surveillance in schools—a cluster randomised trial. EClinicalMedicine 39 101082.
[36] JONES, C. (2021). ‘Pool testing’ to combat Covid on campus grows popular in California schools. Available at edsource.org/2021/pool-testing-to-combat-covid-on-campus-grows-popular-in-california-schools/661144. [Online; posted 15 September 2021].
[37] JOSEPH, L. and BELISLE, P. (2017). Version 1.3 beta.parms.from.quantiles [R] Computing Beta distribution parameters. Available at www.medicine.mcgill.ca/epidemiology/Joseph/PBelisle/BetaParmsFromQuantiles.html. [Online; updated February 2017].
[38] KIM, H.-Y., HUDGENS, M. G., DREYFUSS, J. M., WESTREICH, D. J. and PILCHER, C. D. (2007). Comparison of group testing algorithms for case identification in the presence of test error. Biometrics 63 1152-1163, 1313. · Zbl 1136.62389
[39] KOH, W. C., NAING, L., CHAW, L., ROSLEDZANA, M. A., ALIKHAN, M. F., JAMALUDIN, S. A., AMIN, F., OMAR, A., SHAZLI, A. et al. (2020). What do we know about SARS-CoV-2 transmission? A systematic review and meta-analysis of the secondary attack rate and associated risk factors. PLoS ONE 15 1-23.
[40] LARREMORE, D. B., WILDER, B., LESTER, E., SHEHATA, S., BURKE, J. M., HAY, J. A., TAMBE, M., MINA, M. J. and PARKER, R. (2020). Test sensitivity is secondary to frequency and turnaround time for COVID-19 screening. Sci. Adv.
[41] LIN, Y.-J., YU, C.-H., LIU, T.-H., CHANG, C.-S. and CHEN, W.-T. (2020). Positively Correlated Samples Save Pooled Testing Costs. Available at arXiv:2011.09794.
[42] MA, Q., LIU, J., LIU, Q., KANG, L., LIU, R., JING, W., WU, Y. and LIU, M. (2021). Global percentage of asymptomatic SARS-CoV-2 infections among the tested population and individuals with confirmed COVID-19 diagnosis: A systematic review and meta-analysis. JAMA Network Open 4.
[43] MADEWELL, Z.J., YANG, Y., LONGINI, I.M., HALLORAN, M.E. and DEAN, N.E. (2020). Household transmission of SARS-CoV-2: A systematic review and meta-analysis. JAMA Network Open 3 e2031756.
[44] MASS. GOV (2021). Baker-Polito Administration’s First in the Nation COVID-19 Pooled Testing Initiative Finds 0.7
[45] MASSACHUSSETS, DEPARTMENT OF EDUCATION (2022). COVID-19 Testing Program. Available at www.doe.mass.edu/covid19/testing/default.html. [Online; updated 5 January 2022].
[46] MCMAHAN, C. S., TEBBS, J. M. and BILDER, C. R. (2012a). Informative Dorfman screening. Biometrics 68 287-296. · Zbl 1241.62161
[47] MCMAHAN, C. S., TEBBS, J. M. and BILDER, C. R. (2012b). Two-dimensional informative array testing. Biometrics 68 793-804. · Zbl 1272.62073
[48] MINA, M. J., PARKER, R. and LARREMORE, D. B. (2020). Rethinking Covid-19 test sensitivity—a strategy for containment. N. Engl. J. Med. 383 e120.
[49] MWAI, P. (2021). Coronavirus in Africa: Concern growing over third wave of Covid-19 infections. Available at bbc.com/news/world-africa-53181555. [Online; posted 7-June-2021].
[50] NOUVELLET, P., GARSKE, T., MILLS, H. L., NEDJATI-GILANI, G., HINSLEY, W., BLAKE, I. M., VAN KERKHOVE, M. D., CORI, A., DORIGATTI, I. et al. (2015). The role of rapid diagnostics in managing Ebola epidemics. Nature 528 S109-S116.
[51] ORAN, D. P. and TOPOL, E. J. (2020). Prevalence of asymptomatic SARS-CoV-2 infection : A narrative review. Ann. Intern. Med. 173 362-367.
[52] PIETSCH, B. (2021). More coronavirus tests will be available next month, Fauci says, as U.S. struggles with shortage. Available at www.washingtonpost.com/health/2021/12/27/omicron-covid-test-shortage-fauci/. [Online; posted 27 December 2021].
[53] POLLOCK, A. M. and LANCASTER, J. (2020). Asymptomatic transmission of Covid-19. BMJ 371 m4851.
[54] POLLOCK, N. R., BERLIN, D., SMOLE, S. C., MADOFF, L. C., BROWN, C., HENDERSON, K., LARSEN, E., HAY, J., GABRIEL, S. et al. (2021). Implementation of SARS-Cov2 screening in K-12 schools using in-school pooled molecular testing and deconvolution by rapid antigen test. Journal of Clinical Microbiology 59 1-7.
[55] PUBLIC HEALTH ENGLAND (2020). Understanding cycle threshold (Ct) in SARS-CoV-2 RT-PCR: A guide for health protection teams. Available at www.gov.uk/government/publications/cycle-threshold-ct-in-sars-cov-2-rt-pcr.
[56] RANNAN-ELIYA, R. P., WIJEMUNIGE, N., GUNAWARDANA, J., AMARASINGHE, S. N., SIVAGNANAM, I., FONSEKA, S., KAPUGE, Y. and SIGERA, C. P. (2021). Increased intensity of PCR testing reduced COVID-19 transmission within countries during the first pandemic wave: Study examines increased intensity of reverse transcription-polymerase chain reaction (PCR) testing and its impact on COVID-19 transmission. Health Aff. 10-1377.
[57] REWLEY, J. (2020). Specimen pooling to conserve additional testing resources when persons’ infection status is correlated: A simulation study. Epidemiology 31 832-835.
[58] RITCHIE, H., MATHIEU, E., RODÉS-GUIRAO, L., APPEL, C., GIATTINO, C., ORTIZ-OSPINA, E., HASELL, J., MACDONALD, B., BELTEKIAN, D. et al. (2020). Coronavirus pandemic (COVID-19). Our World in Data. ourworldindata.org/coronavirus.
[59] SIMAS, A. M., CROTT, J. W., SEDORE, C., ROHRBACH, A., MONACO, A. P., GABRIEL, S. B., LENNON, N., BLUMENSTIEL, B. and GENCO, C. A. (2021). Pooling for SARS-CoV2 surveillance: Validation and strategy for implementation in K-12 schools. Frontiers in Public Health 9 1-7.
[60] SPIELBERGER, B. D., GOERNE, T., GEWENIGER, A., HENNEKE, P. and ELLING, R. (2021). Intra-household and close-contact SARS-CoV-2 transmission among children—A systematic review. Frontiers in Pediatrics 9.
[61] STEVENS, J. P., HORNG, S., O’DONOGHUE, A., MORAVICK, S. and WEISS, A. (2021). How one Boston hospital built a Covid-19 forecasting system. Harvard Business Review.
[62] TOM, M. R. and MINA, M. J. (2020). To interpret the SARS-CoV-2 test, consider the cycle threshold value. Clin. Infect. Dis. 71 2252-2254.
[63] TSO, C. F., GARIKIPATI, A., GREEN-SAXENA, A., MAO, Q. and DAS, R. (2021). Correlation of population SARS-CoV-2 cycle threshold values to local disease dynamics: Exploratory observational study. JMIR Public Health and Surveillance 7.
[64] TU, X. M., LITVAK, E. and PAGANO, M. (1995). On the informativeness and accuracy of pooled testing in estimating prevalence of a rare disease: Application to HIV screening. Biometrika 82 287-297. · Zbl 0823.62095
[65] WANG, H., HOGAN, C. A., MILLER, J. A., SAHOO, M. K., HUANG, C. H., MFUH, K. O., SIBAI, M., ZEHNDER, J., HICKEY, B. et al. (2021). Performance of nucleic acid amplification tests for detection of severe acute respiratory syndrome coronavirus 2 in prospectively pooled specimens. Emerg. Infec. Dis. 27 92-103.
[66] WEIN, L. M. and ZENIOS, S. A. (1996). Pooled testing for HIV screening: Capturing the dilution effect. Oper. Res. 44 543-569. · Zbl 0865.90091
[67] YAMAMURA, K. and HINO, A. (2007). Estimation of the proportion of defective units by using group testing under the existence of a threshold of detection. Comm. Statist. Simulation Comput. 36 949-957. · Zbl 1126.62112
[68] ZHANG, Y., LI, Y., WANG, L., LI, M. and ZHOU, X. (2020). Evaluating transmission heterogeneity and super-spreading event of COVID-19 in a Metropolis of China. Int. J. Environ. Res. Public Health 17 3705.
[69] ZHANG, J., TIAN, S., LOU, J. and CHEN, Y. (2020). Familial cluster of COVID-19 infection from an asymptomatic. Critical Care 24 7-9.
[70] ZHOU, Y., WANG, L., ZHANG, L., SHI, L., YANG, K., HE, J., ZHAO, B., OVERTON, W., PURKAYASTHA, S. et al. (2020). A spatiotemporal epidemiological prediction model to inform county-level COVID-19 risk in the United States. Harvard Data Science Review
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.