×

Deciding stability of sheaves on curves. (English) Zbl 1492.14058

The authors show that there is an algorithm to determine whether a kernel sheaf over a smooth projective curve over an algebraically closed field is semistable. The algorithm uses symmetric powers to make destabilizing subbundles visible as global sections.

MSC:

14H60 Vector bundles on curves and their moduli
14-04 Software, source code, etc. for problems pertaining to algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] J. Abbott, A. M. Bigatti and L. Robbiano, CoCoA: A system for doing Computations in Commutative Algebra, http://cocoa.dima.unige.it.
[2] L. L. Avramov, Symmetric algebras of modules of projective dimension one, Algebraic geometry, Proc., Bucharest 1980, 5-1-1 (1981), 1981.
[3] Brenner, H., Bounds for test exponents, Compositio Math.142 (2005) 1. · Zbl 1105.13006
[4] Brenner, H., Looking out for stable syzygy bundles, Adv. Math.219 (2008) 401-427. · Zbl 1166.13007
[5] Brenner, H. and Stäbler, A., On the behaviour of strong semistability in geometric deformations, Illinois J. Math.57(2) (2013) 325-341. · Zbl 1310.14034
[6] W. Bruns, B. Ichim, T. Römer, R. Sieg and C. Söger, Normaliz. algorithms for rational cones and affine monoids, https://www.normaliz.uni-osnabrueck.de.
[7] Davis, T. A., Algorithm 915, suitesparseqr: Multifrontal multithreaded rank-revealing sparse qr factorization, ACM Trans. Math. Softw.38 (2011) 8:1-8:22. · Zbl 1365.65122
[8] D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, http://www.math.uiuc.edu/Macaulay2/.
[9] Hartshorne, R., Algebraic Geometry, , Vol. 52 (Springer Verlag, 1977). · Zbl 0367.14001
[10] B. Hovinen, Library for exact linear algebra (2011), https://www.singular.uni-kl.de/lela/.
[11] Huybrechts, D. and Lehn, M., The Geometry of Moduli Spaces of Sheaves, 2nd edn. (Cambridge University Press, 2010). · Zbl 1206.14027
[12] Kaid, A. and Kasprowitz, R., Semistable vector bundles and Tannaka duality from a computational point of view, Exper. Math.21(2) (2012) 171-188. · Zbl 1256.14043
[13] Lebelt, K., Zur homologischen Dimension äußerer Potenzen von Moduln, Arch. Math.26 (1975) 595-601. · Zbl 0335.13007
[14] Mumford, D., Fogarty, J. and Kirwan, F., Geometric Invariant Theory, , Vol. 34, 3rd edn. (Springer-Verlag, Berlin, 1994). · Zbl 0797.14004
[15] Okonek, C., Schneider, M. and Spindler, H., Vector Bundles on Complex Projective Spaces (Birkhäuser, 1980). · Zbl 0438.32016
[16] Sakai, F., Symmetric powers of the cotangent bundle and classification of algebraic varieties, Lect. Notes Math.732 (1979) 545-563.
[17] Scheja, G. and Storch, U., Lehrbuch der Algebra, , Vol. 2 (B.G. Teubner, 1988). · Zbl 0638.00001
[18] M. Teixidor i Bigas, Vector bundles on curves (2002), https://www.semanticscholar.org/paper/VECTOR-BUNDLES-ON-CURVES-Teixidor-BIGAS/dd79abcec738d08efe948e4a9aa5ad74dacf16e2. · Zbl 1251.14024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.