zbMATH — the first resource for mathematics

Propagation of singularities and maximal functions in the plane. (English) Zbl 0754.35004
(Author’s summary.) We mainly generalize Bourgain’s circular maximal function to include variable coefficient averages. Our techniques involve a combination of Bourgain’s basic ideas plus microlocal analysis. In particular, to see the role of curvature, we rely heavily on methods used in studying propagation of singularities for hyperbolic differential equations. We also show that, for \(p>2\), there is local smoothing in \(L^ p\) for solutions to the wave equation.

35A20 Analyticity in context of PDEs
35A27 Microlocal methods and methods of sheaf theory and homological algebra applied to PDEs
58J47 Propagation of singularities; initial value problems on manifolds
47G20 Integro-differential operators
Full Text: DOI EuDML
[1] Besse, A.L.: Manifolds all of whose geodesics are closed. Berlin Heidelberg New York: Springer 1978 · Zbl 0387.53010
[2] Bourgain, J.: Averages in the plane over convex curves and maximal operators. J. Analyse Math.47, 69-85 (1986) · Zbl 0626.42012
[3] Carbery, A.: The boundedness of the maximal Bochner-Riesz operator onL 4(?2). Duke Math. J.50, 409-416 (1983) · Zbl 0522.42015
[4] Carleson, L., Sjölin, P.: Oscillatory integrals and a multiplier problem for the disk. Studia Math.44, 287-299 (1972) · Zbl 0215.18303
[5] Constantin, P., Saut, J.: Local smoothing properties of dispersive equations. J. Amer. Math. Soc.1, 431-439 (1988) · Zbl 0667.35061
[6] Falconer, K.J.: The geometry of fractal sets. Cambridge: Cambridge Univ. Pres 1985 · Zbl 0587.28004
[7] Hörmander, L.: Fourier integrals I. Acta Math.127, 79-183 (1971) · Zbl 0212.46601
[8] Hörmander, L.: The spectral function of an elliptic operator. Acta Math.88, 341-370 (1968) · Zbl 0164.40701
[9] Hörmander, L.: The analysis of linear partial differential operators III, IV. Berlin Heidelberg New York: Springer 1985 · Zbl 0612.35001
[10] Journé, J.-L., Soffer, A., Sogge, C.D.: Decay estimates for Schrödinger operators. Comm. Pure Appl. Math. (to appear) · Zbl 0743.35008
[11] Kaneko, M., Sunouchi, G.: On the Littlewood-Paley and Marcinkiewicz functions in higher dimensions. Tôhoku Math. J.37, 343-365 (1985) · Zbl 0579.42011
[12] Kato, T.: On the Cauchy problem for the (generalized) Kortveg-de Vries equation. In: Studies in Applied Math., pp. 9-23, Academic Press 1986
[13] Peral, J.:L p estimates for the wave equation. J. Funct. Anal.36, 114-145 (1980) · Zbl 0442.35017
[14] Phong, D.H., Stein, E.M.: Hilbert integrals, singular integrals and Radon transforms I. Acta Math.157, 99-157 (1986) · Zbl 0622.42011
[15] Seeger, A., Sogge, C.D., Stein, E.M.: Regularity properties of Fourier integral operators, Ann. Math. (to appear) · Zbl 0754.58037
[16] Sjölin, P.: Regularity of solutions to the Schrödinger equation. Duke Math. J.55, 699-715 (1987) · Zbl 0631.42010
[17] Sogge, C.D., Stein, E.M.: Averages over hypersufaces: smoothness of generalized Radon transforms. J. Anal. Math.54, 165-188 (1990) · Zbl 0695.42012
[18] Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton: Princeton Univ. Press 1970 · Zbl 0207.13501
[19] Stein, E.M.: Maximal functions: spherical means. Proc. Nat. Acad. Sci.73, 2174-2175 (1976) · Zbl 0332.42018
[20] Stein, E.M.: Oscillatory integrals in Fourier analysis. In: Beijing lectures in harmonic analysis, pp. 307-356. Princeton: Princeton Univ. Press 1986
[21] Stein, E.M., Wainger, S.: Problems in harmonic analysis related to curvature. Bull. Amer. Math. Soc.84, 1239-1295 (1978) · Zbl 0393.42010
[22] Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton: Princeton Univ. Press 1971 · Zbl 0232.42007
[23] Vega, L.: Schrödinger equations: pointwise convergence to the initial data. Proc. Amer. Math. Soc.102, 874-878 (1988) · Zbl 0654.42014
[24] Wilder, J.B.: The non-Euclidean Kakeya problem. In: Proceedings of the 25th summer meeting of the Canadian Mathematical Congress. 1971, pp. 603-607
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.