On the Born-Oppenheimer expansion for polyatomic molecules. (English) Zbl 0754.35099

The Schrödinger operator \(P(h)\) for a polyatomic molecule with Coulomb interactions is discussed in the limit where the mass ratio \(h^ 2\) of electronic to nuclear mass tends to zero. Asymptotic expansions of eigenvalues and eigenfunctions of \(P(h)\) are obtained to all orders in \(h\). This justifies the Born-Oppenheimer expansion: M. Born and R. Oppenheimer [Annal. Phys. 84, 457 ff. (1927)] in the physically relevant case.
Reviewer: J.Asch (Berlin)


35P20 Asymptotic distributions of eigenvalues in context of PDEs
81V55 Molecular physics
35J10 Schrödinger operator, Schrödinger equation
Full Text: DOI


[1] [A] Agmon, S.: Lectures on exponential decay of solutions of second-order elliptic equations. Princeton, NJ: Princeton University Press 1982 · Zbl 0503.35001
[2] [AS] Aventini, P., Seiler, R.: On the electronic spectrum of the diatomic molecule. Commun. Math. Phys.22, 269–279 (1971) · Zbl 0219.47011
[3] [BK] Balazard-Konlein, A.: Calcul fonctionel pour des opérateurh-admissible à symbole opérateurs at applications. Thése de 3ème cycle, Université de Nantes (1985)
[4] [BO] Born, M., Oppenheimer, R.: Zur Quantentheorie der Molekeln. Annal. Phys.84, 457 (1927) · JFM 53.0845.04
[5] [BT] Bott, R., Tu, L.W.: Differential forms in algebraic topology. Berlin, Heidelberg, New York: Springer 1982 · Zbl 0496.55001
[6] [CDS] Combes, J.M., Duclos, P., Seiler, R.: The Born-Oppenheimer approximation. In: Rigorous atomic and molecular physics. Velo, G., Wightman, A. (eds.). pp. 185–212. New York: Plenum Press 1981
[7] [CS] Combes, J.M., Seiler, R.: Regularity and asymptotic properties of the discrete spectrum of electronic hamiltonians. Int. J. Quant. Chem.XIV, 213–229 (1978)
[8] [GMS] Gerard, C., Martinez, A., Sjöstrand, J.: A mathematical approach to the effective Hamiltonian in perturbed periodic problems. Preprint Orsay 1990, submitted to Commun. Math. Phys. · Zbl 0753.35057
[9] [HS1] Helffer, B., Sjöstrand, J.: Multiple wells in the semiclassical limit I. Commun. Partial Differ. Equations9, (4), 337–408 (1984) · Zbl 0546.35053
[10] [HS2] Helffer, B., Sjöstrand, J.: Puits multiples en mécanique semi-classique VI (Cas des puits sous-variétés). Ann. Inst. Henri Poincaré46, 353–372 (1987) · Zbl 0648.35027
[11] [Ha1] Hagedorn, G.A.: High order corrections to the time-independent Born-Oppenheimer approximation. I. Smooth potentials. Ann. Inst. Henri Poincaré47, 1–16 (1987) · Zbl 0621.41012
[12] [Ha2] Hagedorn, G.A.: High order corrections to the time-independent Born-Oppenheimer approximation. II. Diatomic Coulomb systems. Commun. Math. Phys.116, 23–44 (1988)
[13] [Hu] Hunziker, W.: Distortion analycity and molecular resonance curves. Ann. Inst. H. Poincaré45, 339–358 (1986) · Zbl 0619.46068
[14] [Hus] Husemoller, D.: Fiber bundles. Berlin, Heidelberg, New York: Springer 1975
[15] [K] Klein, M.: On the mathematical theory of predissociation. Ann. Phys.178, 48–73 (1987) · Zbl 0649.35024
[16] [Ma1] Martinez, A.: Estimations de l’effet tunnel pour le double puits I. J. Math. Pures Appl.66, 195–215 (1987) · Zbl 0564.35028
[17] [Ma2] Martinez, A.: Développements asymptotiques et effet tunnel dans l’approximation de Born-Oppenheimer: Ann. Inst. Henri Poincaré49, 239–257 (1989)
[18] [Ma3] Martinez, A.: Resonances dans l’approximation de Born-Oppenheimer I.J. Diff. Eq. (to appear)
[19] [Ma4] Martinez, A.: Resonances dans l’approximation de Born-Oppenheimer II – Largeur des resonances. Commun. Math. Phys.135, 517–530 (1991) · Zbl 0737.35047
[20] [S] Seiler, R.: Does the Born-Oppenheimer approximation work? Helv. Phys. Acta46, 230–234 (1973)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.