# zbMATH — the first resource for mathematics

Sacks forcing, Laver forcing, and Martin’s axiom. (English) Zbl 0755.03026
This paper is mainly about certain cardinals associated with Marczewski’s ideal $$s^ 0$$. The cardinals considered here include $$\text{add}(s^ 0)$$ and $$\text{cov}(s^ 0)$$, which denote the least cardinal $$\kappa$$ such that the ideal $$s^ 0$$ is not $$\kappa^ +$$-additive and the least $$\kappa$$ such that $$2^ \omega$$ can be covered by $$\kappa$$ sets in $$s^ 0$$, respectively. Some of the theorems proved about these cardinals are as follows: (a) $$\text{MA}+\neg\text{CH}$$ implies that $$\text{add}(s^ 0)$$ is the least cardinal $$\kappa$$ such that $$p\Vdash_{\text{Sacks forcing}}$$ “$$\text{cof}(\mathfrak c)=\kappa$$” for some $$p$$; (b) If one adds $$\omega_ 2$$ Sacks reals iteratively with countable supports to a model of CH, then $$\text{add}(s^ 0)=\omega_ 1$$ and $${\mathfrak c}=\omega_ 2=\text{cov}(s^ 0)$$ in the extension; (c) There is a model of $$\text{MA}+\neg\text{CH}$$ in which $$\text{add}(s^ 0)=\text{cov}(s^ 0)=\omega_ 1$$. Theorem (c) has also been obtained independently by B. Velickovic [Compos. Math. 79, 279-294 (1991; Zbl 0735.03023)]. It follows from (a) and (c) that it is consistent with $$\text{MA}+\neg\text{CH}$$ for Sacks forcing to collapse cardinals. By way of contrast, the authors include the theorem that MA implies that Laver forcing preserves all cardinals. There is an appendix in which it is shown that if $${\mathfrak c}=\omega_ 2$$, then Sacks forcing adds a stationary subset of $$\omega_ 2$$ that does not have a ground model stationary subset.
Reviewer: J.Takahashi (Kobe)

##### MSC:
 3e+35 Consistency and independence results 3e+40 Other aspects of forcing and Boolean-valued models 3e+50 Continuum hypothesis and Martin’s axiom
Full Text:
##### References:
  Abraham, U.: A minimal model for ?CH: iteration of Jensen’s reals. Trans. Am. Math. Soc.281, 657-674 (1984) · Zbl 0541.03029  Abraham, U., Rubin, M., Shelah, S.: On the consistency of some partition theorems for continuous colorings and the structure of ?1 real order types. Ann. Pure and Appl. Logic29, 123-206 (1985) · Zbl 0585.03019 · doi:10.1016/0168-0072(84)90024-1  Abraham, U., Toodorcevic, S.: Martin’s axiom and first-countable S- and L-spaces. In: Handbook of set theoretic topology. Kunen, K., Vaughan, J.E. (eds.) North-Holland 1984, pp. 327-346  Aniszczyk, B., Frankiewicz, R., Plewik, S.: Remarks on (s) and Ramsey-measurable functions. Bull. Pol. Acad. of Sci. Math.35, 479-485 (1987) · Zbl 0662.28002  Aniszczyk, B.: Remarks on ?-algebra of (s)-measurable sets. Bull. Pol. Acad. Sci. Math.35, 561-563 (1987) · Zbl 0648.28001  Balcar, B., Vojtas, P.: Refining systems on boolean algebras. (Lect. Notes Math., vol. 619, pp. 45-68) Berlin Heidelberg New York: Springer 1977 · Zbl 0393.06006  Baumgartner, J.: Iterated forcing. In: Mathias, A.R.D. (eds.) Surveys in set theory. London Mathematical Society (Lect. Notes Math., vol. 87, pp. 1-59) Cambridge University Press, Cambridge 1983  Baumgartner, J., Laver, R.: Iterated perfect set forcing. Ann. Math. Logic17, 271-288 (1979) · Zbl 0427.03043 · doi:10.1016/0003-4843(79)90010-X  Blass, A., Shelah, S.: Near coherence of filters. III. A simplified consistency proof. Notre Dame J. Formal Logic30, 530-538 (1989) · Zbl 0702.03030 · doi:10.1305/ndjfl/1093635236  Blass, A.: Applications of superperfect forcing and its relatives. In: Steprans, J., Watson, S. (eds.) Set theory and its applications. York University 1987 (Lect. Notes Math., vol. 1401, pp. 18-40) Berlin Heidelberg New York: Springer 1989  Brown, J.B.: Singular sets and Baire order. Real Anal. Exch.10, 78-84 (1985) · Zbl 0579.54021  Brown, J.B.: Marczewski null sets and intermediate Baire order. Contemp. Math.94, 43-50 (1989) · Zbl 0711.28001  Brown, J.B.: The Ramsey sets and related sigma algebras and ideals. (Preprint) · Zbl 0737.28004  Brown, J.B., Cox, G.V.: Classical theory of totally imperfect sets. Real Anal. Exch.7, 185-232 (1982) · Zbl 0503.54045  Brown, J.B., Prikry, K.: Variations on Lusin’s theorem. Trans. Am. Math. Soc.302, 77-86 (1987) · Zbl 0619.28005  Corazza, P.: The generalized Borel conjecture and strongly proper orders. Trans. Am. Math. Soc.316, 115-140 (1989) · Zbl 0693.03031 · doi:10.1090/S0002-9947-1989-0982239-X  Devlin, K.: ?1-trees. Ann. Math. Logic13, 267-330 (1978) · Zbl 0397.03035  Gurevich, Y., Shelah, S.: Monadic theory of order and topology in ZFC. Ann. Math. Logic23, 179-198 (1982) · Zbl 0516.03007 · doi:10.1016/0003-4843(82)90004-3  Judah, H., Shelah, S.: The Kunen-Miller chart. J. Symb. Logic55, 909-927 (1990) · Zbl 0718.03037 · doi:10.2307/2274464  Kechris, A.: On a notion of smallness for subsets of the Baire space. Trans. Am. Math. Soc.229, 191-207 (1977) · Zbl 0401.03022 · doi:10.1090/S0002-9947-1977-0450070-1  Kunen, K.: Set theory. Amsterdam: North-Holland 1980 · Zbl 0443.03021  Kunen, K.: Where MA first fails. J. Symb. Logic53, 429-433 (1988) · Zbl 0681.03036 · doi:10.2307/2274515  Laver, R.: On the consistency of Borel’s conjecture. Acta Math.137, 151-169 (1976) · Zbl 0357.28003 · doi:10.1007/BF02392416  Marczewski, E.: Sur une classe de fonctions de W. Sierpi?ski et la classe correspondante d’ensembles. Fundam. Math.24, 17-34 (1935) · JFM 61.0229.01  Matet. P.: Personal communication  Mathias, A.R.D.: Happy Families. Ann. Math. Logic12, 59-111 (1977) · Zbl 0369.02041 · doi:10.1016/0003-4843(77)90006-7  Miller, A.: Rational perfect set forcing. Contemp. Math. (American Mathematical Society)31, 143-159 (1984) · Zbl 0555.03020  Miller, A.: Special subsets of the real line. In: Kunen, K., Vaughan, J. (eds.) Handbook of set theoretic topology. Amsterdam: North-Holland 1984, pp. 201-234  Morgan II, J.C.: On the general theory of point sets. II. Real Anal. Exch.12, 377-386 (1986) · Zbl 0629.28001  Mycielski, J.: Some new ideals of subsets on the real line. Colloq. Math.20, 71-76 (1969) · Zbl 0203.05701  Pawlikowski, J.: Parametrized Ellentuck theorem. Topology Appl.37, 65-73 (1990) · Zbl 0734.04001 · doi:10.1016/0166-8641(90)90015-T  Sacks, G.E.: Forcing with perfect closed sets, axiomatic set theory. Proc. Symp. Pure Math.13, 331-355 (1971)  Shelah, S.: A weak generalization of MA to higher cardinals. Isr. J. Math.30, 297-306 (1978) · Zbl 0384.03032 · doi:10.1007/BF02761994  Silver, J.: Every analytic set is Ramsey. J. Symb. Logic.35, 60-64 (1970) · Zbl 0216.01304 · doi:10.2307/2271156  Steprans, J.: The covering number of the Mycielski ideal. (Preprint) · Zbl 0916.03033  Velickovic, B.: CCC posets of perfect trees. (Preprint) · Zbl 0735.03023  Weiss, W.: Versions of Martin’s Axiom. In: Kunen, K., Vaughan, J.E. (eds.) Handbook of set theoretic topology. Amsterdam: North-Holland 1984, pp. 827-886
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.