zbMATH — the first resource for mathematics

Spineurs, opérateurs de Dirac et variations de métriques. (Spinors, Dirac operators and variations of the metrics). (French) Zbl 0755.53009
The construction of a spinor bundle over a Riemannian spin manifold depends on the given metric. In this article a geometric process to compare spinor fields for different metrics is described. As an application one can study how the eigenvalues of the Dirac operator depend on the metric. A few cases are discussed in which the eigenvalues are critical for arbitrary volume preserving variations of the metric.

53C27 Spin and Spin\({}^c\) geometry
58C40 Spectral theory; eigenvalue problems on manifolds
Full Text: DOI
[1] Atiyah, M. F., Bott, R., Shapiro, A. Clifford modules. Topology3, [Suppl. 1] 3–38 (1964) · Zbl 0146.19001
[2] Bär, C.: Das Spektrum von Dirac-Operatoren. Dissertation, Univ. Bonn, 1990 · Zbl 0748.53022
[3] Berger, M.: Sur les premières valeurs propres des variétés riemanniennes. Compositio Math.26, 129–149 (1973) · Zbl 0257.53048
[4] Besse, A. L.: Einstein manifolds. Ergeb. Math. vol.10. Berlin, Heidelberg, New York: Springer 1987 · Zbl 0613.53001
[5] Binz, E., Pferschy, R.: The Dirac operator and the change of the metric. C. R. Math. Rep. Acad. Sci. CanadaV 269–274 (1983) · Zbl 0532.53033
[6] Cartan, E.: La théorie des spineurs. Paris: Hermann 1937; and 2éme édition, The theory of spinors. Paris: Hermann 1966
[7] Cartan, E.: Notice sur les travaux scientifiques. Paris: Gauthier-Villars 1974 · Zbl 0293.01039
[8] Chevalley, C.: Algebraic theory of spinors New York: Columbia University Press 1954 · Zbl 0057.25901
[9] Dabrowski, L., Percacci, R.: Spinors and diffeomorphisms. Commun. Math. Phys.106, 691–704 (1986) · Zbl 0605.53042
[10] Friedrich, T.: Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen mannigfaltigkeit nicht negativer Skalarkrümmung. Math. Nach.97, 117–146 (1980) · Zbl 0462.53027
[11] Hijazi, O.: A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors. Commun. Math. Phys.104, 151–162 (1986) · Zbl 0593.58040
[12] Hitchin, N.: Harmonic spinors. Adv. Math.14, 1–55 (1974) · Zbl 0284.58016
[13] Kato, T.: Perturbation theory for linear operators. Grundl. Math. Wiss. vol.136. Berlin, Heidelberg, New York: Springer 1966 · Zbl 0148.12601
[14] Kosmann, Y.: Derivées de Lie des spineurs. Ann. Mat. Pura ed Appl.91, 317–395 (1972) · Zbl 0231.53065
[15] Lawson, H. B., Michelsohn, M. L.: Spin geometry. Princeton Math. Series vol.38, Princeton, NJ: Princeton University Press 1989 · Zbl 0688.57001
[16] Lichnerowicz, A.: Spineurs harmoniques. C.R. Acad. Sci. ParisA257, 7–9 (1963) · Zbl 0136.18401
[17] Milnor, J. W.: Remarks concerning Spin-manifolds. In: Differential and Combinatorial Topology. A symposium in honor of Morse, M., Cairns, S. S. (ed.), pp. 55–62. Princeton, NJ: Princeton University Press 1965
[18] Ne’eman, Y.: Spinor-type fields with linear, affine and general coordinate transformations. Ann. Inst. Henri PoincaréXXVIII, 369–378 (1978)
[19] Penrose, R., Rindler, R.,: Spinors and space-time. Cambridge: Cambridge University Press 1984 · Zbl 0538.53024
[20] Pferschy, R.: Die Abhängigkeit des Dirac-Operators von der Riemannschen Metrik. Dissertation Techn. Univ. Graz 1983
[21] Weyl, H.: The classical groups, their invariants and representations. Princeton Math. Series1, Princeton, NJ: Princeton University Press, Rev. ed. 1946; 8th edition, 1973 · Zbl 1024.20502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.