Homoclinic orbits in the dynamic phase-space analogy of an elastic strut. (English) Zbl 0755.73023

Summary: The equation (*) \(u^{IV}(x)+Pu''(x)+u(x)-u^ 2(x)=0\), is a possible dimensionless version of a model for the configuration of a very long strut resting on a nonlinear elastic foundation with axial loading \(P\). By seeking to establish the existence of homoclinic orbits connecting the zero equilibrium of (*), now regarded as defining a four dimensional dynamical system, to itself, one is pursuing the so-called ‘dynamical phase-space analogy’ for the spatial configuration suggested by the form of the equation. The existence of homoclinic solutions is then interpreted as indicating the presence of spatially localized buckling of the deformed strut.


74B20 Nonlinear elasticity
74G60 Bifurcation and buckling
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
Full Text: DOI


[1] DOI: 10.1007/BF01444543 · Zbl 0702.34039 · doi:10.1007/BF01444543
[2] DOI: 10.1007/BF01457066 · Zbl 0569.70017 · doi:10.1007/BF01457066
[3] Hille, Methods in Classical and Functional Analysis (1972)
[4] Toland, A.M.S. Symp. Pure Math. 45 pp 447– (1986) · doi:10.1090/pspum/045.2/843631
[5] Hunt, Proc. Roy. Soc. Lond. 425 pp 245– (1989)
[6] Iooss, C.R. Acad. Sci. Paris 311 pp 265– (1990)
[7] DOI: 10.1016/0022-1236(71)90030-9 · Zbl 0212.16504 · doi:10.1016/0022-1236(71)90030-9
[8] DOI: 10.1016/0022-5096(91)90010-L · Zbl 0825.73249 · doi:10.1016/0022-5096(91)90010-L
[9] Hunt, Proc. Roy. Soc. Lond. 434 pp 485– (1991)
[10] Stuart, Proc. Roy. Soc. Edin. 101 pp 273– (1985) · Zbl 0582.34010 · doi:10.1017/S0308210500020825
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.