Georgiev, Danko D.; Glazebrook, James F. On the quantum dynamics of Davydov solitons in protein \(\alpha\)-helices. (English) Zbl 1514.92075 Physica A 517, 257-269 (2019). Summary: The transport of energy inside protein \(\alpha\)-helices is studied by deriving a system of quantum equations of motion from the Davydov Hamiltonian with the use of the Schrödinger equation and the generalized Ehrenfest theorem. Numerically solving the system of quantum equations of motion for different initial distributions of the amide I energy over the peptide groups confirmed the generation of both moving or stationary Davydov solitons. In this simulation the soliton generation, propagation, and stability were found to be dependent on the symmetry of the exciton-phonon interaction Hamiltonian and the initial site of application of the exciton energy. Cited in 5 Documents MSC: 92D20 Protein sequences, DNA sequences 35Q92 PDEs in connection with biology, chemistry and other natural sciences Keywords:Davydov soliton; numerical simulation; protein \(\alpha\)-helix; quantum dynamics; stability × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Bu, Z.; Callaway, D. J.E., Proteins move! Protein dynamics and long-range allostery in cell signaling, (Donev, R., Advances in Protein Chemistry and Structural Biology, vol. 83 (2011), Academic Press), 163-221 [2] Frauenfelder, H.; Sligar, S. G.; Wolynes, P. G., The energy landscapes and motions of proteins, Science, 254, 5038, 1598-1603 (1991) [3] Georgiev, D. D.; Glazebrook, J. F., The quantum physics of synaptic communication via the SNARE protein complex, Prog. Biophys. Mol. Biol., 135, 16-29 (2018) [4] Pauling, L.; Corey, R. B.; Branson, H. R., The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain, Proc. Natl. Acad. Sci., 37, 4, 205-211 (1951) [5] Davydov, A. S., The theory of contraction of proteins under their excitation, J. Theoret. Biol., 38, 3, 559-569 (1973) [6] Davydov, A. S.; Kislukha, N. I., Solitary excitons in one-dimensional molecular chains, Phys. Status Solidi b, 59, 2, 465-470 (1973) [7] Davydov, A. S.; Kislukha, N. I., Solitons in one-dimensional molecular chains, Phys. Status Solidi b, 75, 2, 735-742 (1976) [8] Davydov, A. S., Solitons and energy transfer along protein molecules, J. Theoret. Biol., 66, 2, 379-387 (1977) [9] Davydov, A. S.; Solitons; bioenergetics, and the mechanism of muscle contraction, Int. J. Quantum Chem., 16, 1, 5-17 (1979) [10] Davydov, A. S., Solitons in molecular systems, Phys. Scr., 20, 3-4, 387-394 (1979) · Zbl 1063.81686 [11] Davydov, A. S., Solitons in quasi-one-dimensional molecular structures, Soviet Physics Uspekhi, 25, 12, 898-918 (1982) [12] Christiansen, P. L.; Scott, A. C., Davydov’s Soliton Revisited: Self-Trapping of Vibrational Energy in Protein, NATO ASI Series (1990), Springer: Springer New York [13] Cruzeiro-Hansson, L.; Takeno, S., Davydov model: The quantum, mixed quantum-classical, and full classical systems, Phys. Rev. E, 56, 894-906 (1997) [14] Cruzeiro, L., The Davydov/Scott model for energy storage and transport in proteins, J. Biol. Phys., 35, 1, 43-55 (2009) [15] Förner, W., Quantum and disorder effects in Davydov soliton theory, Phys. Rev. A, 44, 4, 2694-2708 (1991) [16] Förner, W., Davydov soliton dynamics: Initial state, boundary conditions, and numerical procedure, J. Comput. Chem., 13, 3, 275-313 (1992) [17] Förner, W., Davydov soliton dynamics in proteins: I. Initial states and exactly solvable special cases, J. Mol. Model., 2, 5, 70-102 (1996) [18] Förner, W., Davydov soliton dynamics in proteins: II. The general case, J. Mol. Model., 2, 5, 103-135 (1996) [19] Förner, W., Davydov soliton dynamics in proteins: III. Applications and calculation of vibrational spectra, J. Mol. Model., 3, 2, 78-116 (1997) [20] Förner, W., Davydov solitons in proteins, Int. J. Quantum Chem., 64, 3, 351-377 (1997) [21] Kerr, W. C.; Lomdahl, P. S., Quantum-mechanical derivation of the equations of motion for Davydov solitons, Phys. Rev. B, 35, 7, 3629-3632 (1987) [22] Kerr, W. C.; Lomdahl, P. S., Quantum-mechanical derivation of the Davydov equations for multi-quanta states, (Christiansen, P. L.; Scott, A. C., Davydov’s Soliton Revisited: Self-Trapping of Vibrational Energy in Protein (1990), Springer: Springer New York), 23-30 [23] Lawrence, A. F.; McDaniel, J. C.; Chang, B. C.; Pierce, B. M.; Birge, R. R., Dynamics of the Davydov model in \(\alpha \)-helical proteins: Effects of coupling parameters and temperature, Phys. Rev. A, 33, 2, 1188-1201 (1986) [24] Lawrence, A. F.; McDaniel, J. C.; Chang, D. B.; Birge, R. R., The nature of phonons and solitary waves in \(\alpha \)-helical proteins, Biophys. J., 51, 5, 785-793 (1987) [25] Daniel, M.; Latha, M. M., A generalized Davydov soliton model for energy transfer in alpha helical proteins, Physica A, 298, 3-4, 351-370 (2001) · Zbl 0971.92014 [26] Daniel, M.; Latha, M. M., Soliton in alpha helical proteins with interspine coupling at higher order, Phys. Lett. A, 302, 2-3, 94-104 (2002) [27] Brizhik, L.; Eremko, A.; Piette, B.; Zakrzewski, W., Solitons in \(\alpha \)-helical proteins, Phys. Rev. E, 70, 3, Article 031914 pp. (2004) [28] Brizhik, L.; Eremko, A.; Piette, B.; Zakrzewski, W., Charge and energy transfer by solitons in low-dimensional nanosystems with helical structure, Chem. Phys., 324, 1, 259-266 (2006) [29] Brizhik, L.; Eremko, A.; Piette, B.; Zakrzewski, W., Ratchet effect of Davydov’s solitons in nonlinear low-dimensional nanosystems, Int. J. Quantum Chem., 110, 1, 25-37 (2010) [30] Biswas, A.; Moran, A.; Milovic, D.; Majid, F.; Biswas, K. C., An exact solution for the modified nonlinear Schrödinger’s equation for Davydov solitons in \(\alpha \)-helix proteins, Math. Biosci., 227, 1, 68-71 (2010) · Zbl 1195.81047 [31] LeMesurier, B., Studying Davydov’s ODE model of wave motion in \(\alpha \)-helix protein using exactly energy-momentum conserving discretizations for Hamiltonian systems, Math. Comput. Simulation, 82, 7, 1239-1248 (2012) · Zbl 1348.39006 [32] Luo, J.; Piette, B., A generalised Davydov-Scott model for polarons in linear peptide chains, Eur. Phys. J. B, 90, 8, 155 (2017) [33] Taghizadeh, N.; Zhou, Q.; Ekici, M.; Mirzazadeh, M., Soliton solutions for Davydov solitons in \(\alpha \)-helix proteins, Superlattices Microstruct., 102, 323-341 (2017) [34] Blyakhman, L. G.; Gromov, E. M.; Onosova, I. V.; Tyutin, V. V., Dynamics of the Davydov-Scott soliton with location or velocity mismatch of its high-frequency component, Phys. Lett. A, 381, 17, 1490-1492 (2017) [35] Brown, D. W.; West, B. J.; Lindenberg, K., Davydov solitons: New results at variance with standard derivations, Phys. Rev. A, 33, 6, 4110-4120 (1986) [36] Brown, D. W., Balancing the Schrödinger equation with Davydov ansätze, Phys. Rev. A, 37, 12, 5010-5011 (1988) [37] MacNeil, L.; Scott, A. C., Launching a Davydov soliton: II. Numerical studies, Phys. Scr., 29, 3, 284-287 (1984) [38] Scott, A. C., Launching a Davydov soliton: I. Soliton analysis, Phys. Scr., 29, 3, 279-283 (1984) [39] Cruzeiro, L.; Halding, J.; Christiansen, P. L.; Skovgaard, O.; Scott, A. C., Temperature effects on the Davydov soliton, Phys. Rev. A, 37, 3, 880-887 (1988) [40] Fröhlich, H., Interaction of electrons with lattice vibrations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 215, 1122, 291-298 (1952) · Zbl 0047.45501 [41] Fröhlich, H., Electrons in lattice fields, Adv. Phys., 3, 11, 325-361 (1954) · Zbl 0056.23703 [42] Holstein, T., Studies of polaron motion: Part I. The molecular-crystal model, Ann. Physics, 8, 3, 325-342 (1959) · Zbl 0173.30404 [43] Holstein, T., Studies of polaron motion: Part II. The small polaron, Ann. Physics, 8, 3, 343-389 (1959) · Zbl 0173.30404 [44] Scott, A. C., Davydov’s soliton, Phys. Rep., 217, 1, 1-67 (1992) [45] Hyman, J. M.; McLaughlin, D. W.; Scott, A. C., On Davydov’s alpha-helix solitons, Physica D, 3, 1-2, 23-44 (1981) · Zbl 1194.37175 [46] Nevskaya, N. A.; Chirgadze, Y. N., Infrared spectra and resonance interactions of amide-I and II vibrations of \(\alpha \)-helix, Biopolymers, 15, 4, 637-648 (1976) [47] Sun, J.; Luo, B.; Zhao, Y., Dynamics of a one-dimensional Holstein polaron with the Davydov ansätze, Phys. Rev. B, 82, 1, Article 014305 pp. (2010) [48] Sun, K.; Ye, J.; Zhao, Y., Path induced coherent energy transfer in light-harvesting complexes in purple bacteria, J. Chem. Phys., 141, 12, Article 124103 pp. (2014) [49] Bowen, W. P.; Milburn, G. J., Quantum Optomechanics (2015), CRC Press: CRC Press Boca Raton · Zbl 1358.81002 [50] Van-Brunt, A.; Visser, M., Special-case closed form of the Baker-Campbell-Hausdorff formula, J. Phys. A, 48, 22, Article 225207 pp. (2015) · Zbl 1323.15006 [51] Kenkre, V. M.; Raghavan, S.; Cruzeiro-Hansson, L., Thermal stability of extended nonlinear structures related to the Davydov soliton, Phys. Rev. B, 49, 14, 9511-9522 (1994) [52] Kolev, S. K.; Petkov, P. S.; Rangelov, M. A.; Vayssilov, G. N., Ab initio molecular dynamics of \(Na{}^+\) and \(Mg{}^{2 +}\) countercations at the backbone of RNA in water solution, ACS Chem. Biol., 8, 7, 1576-1589 (2013) [53] Kolev, S. K.; Petkov, P. S.; Rangelov, M. A.; Trifonov, D. V.; Milenov, T. I.; Vayssilov, G. N., Interaction of \(Na{}^+ K{}^+ Mg{}^{2 +}\) and \(Ca{}^{2 +}\) counter cations with RNA, Metallomics, 10, 5, 659-678 (2018) [54] Edler, J.; Hamm, P., Self-trapping of the amide I band in a peptide model crystal, J. Chem. Phys., 117, 5, 2415-2424 (2002) [55] Xie, A.; van der Meer, L.; Hoff, W.; Austin, R. H., Long-lived amide I vibrational modes in myoglobin, Phys. Rev. Lett., 84, 23, 5435-5438 (2000) [56] Wang, X.; Brown, D. W.; Lindenberg, K., Quantum Monte Carlo simulation of the Davydov model, Phys. Rev. Lett., 62, 15, 1796-1799 (1989) [57] Itoh, K.; Shimanouchi, T., Vibrational spectra of crystalline formamide, J. Mol. Spectrosc., 42, 1, 86-99 (1972) [58] Scott, A. C., Davydov solitons in polypeptides, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 315, 1533, 423-436 (1985) [59] Cruzeiro-Hansson, L., Two reasons why the Davydov soliton may be thermally stable after all, Phys. Rev. Lett., 73, 21, 2927-2930 (1994) [60] Lippmann, B. A., Generalized Ehrenfest theorem, Phys. Rev. Lett., 16, 4, 135-138 (1966) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.