×

zbMATH — the first resource for mathematics

A matrix integral solution to two-dimensional \(W_ p\)-gravity. (English) Zbl 0756.35074
Based on E. Witten’s computations [IASSNS-HEP-91/24 (1991), preprint] and on V. Kac and A. Schwarz’s observation [Phys. Lett. B. 257, 329-334 (1991)] the authors of this article explicitly develop a matrix model for arbitrary “\(p\)” and present a complete proof for \(p\leq 3\). It is also pointed out that the general proof hinges on the observation that a certain partial differential equation applied to the ratio \(\tau_ p^{(N)}(t)=\tilde A_ p^{(N)}(\Theta)/\tilde B_ p^{(N)}(\Theta)\) produces at once the stress-energy tensor for \(W_ p\)-gravity and this should have an interesting physical interpretation.
Reviewer: C.Dariescu (Iaşi)

MSC:
35Q53 KdV equations (Korteweg-de Vries equations)
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
53D50 Geometric quantization
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] [AvM] Adler, M., van Moerbeke, P.: The boundary of isospectral sets of differential operators, to appear 1992
[2] [A] Anderson, G. W.: Notes on the Heisenberg relation (preprint 1990)
[3] [BTZ] Bessis, D., Itzykson, Cl., Zuber, J.-B.: Quantum field theory techniques in graphical enumeration, Adv. Appl. Math.1, 109–157 (1980) · Zbl 0453.05035
[4] [DJKM] Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. Proe. RIMS Symp. Nonlinear integrable systems, Classical and quantum theory (Kyoto 1981), pp. 39–119. Singapore: World Scientific 1983 · Zbl 0571.35099
[5] [DVV] Dijkgraaf, R., Verlinde, E., Verlinde, H.: Loop equations and Virasoro constraints in non-perturbative 2-D quantum gravity. Nucl. Phys.B348, 435 (1991) · Zbl 0783.58088
[6] [DG] Duistermaat, J.J., Grünbaum, F.A.: Differential equations in the spectral parameter: Commun. Math. Phys.103, 177–240 (1986) · Zbl 0625.34007
[7] [FIZ] Di Francesco, P., Itzykson, Cl. & Zuber, J.-B.: ”ClassicalW-algebras,” preprint 1990
[8] [FKN1] Fukuma, M., Kawai, H. Nakayama, R.: Continuum Schwinger-Dyson equations and universal structures in two-dimensional quantum gravity, UT 562, KEK-TH-251, KEK preprint 90–27, May 1990
[9] [FKN2] Fukuma, M., Kawai, H., Nakayama, R.: Infinite dimensional Grassmannian structure of two-dimensional quantum gravity, UT 572, KEK-TH-272, KEK preprint 90–165, Nov. 1990
[10] [FKN3] Fukuma, M., Kawai, H., Nakayama, R.: Explicit solution forp duality in two-dimensional quantum gravity UT 582, KEK-TH-289, KEK preprint 91-37, May 1991
[11] [Ge] Gervais, J.-L.: Infinite family of polynomial functions of the Virasoro generators with vanishing Poisson bracket, Phys. Lett.160 B, 277 (1985)
[12] [G] Goeree, J.:W-constraints in 2D quantum gravity. Nucl. Phys.B358, 737–757 (1991)
[13] [KR] Kac, V., Raina, A.: Highest weight representations of infinite dimensional Lie algebras. Bombay Lectures: World Scientific 1987 · Zbl 0668.17012
[14] [KS] Kac, V., Schwarz, A.: Geometric interpretation of partition function of 2d-gravity. Phys. Lett.257B, 329–334 (1991)
[15] [K1] Kontsevich, M.: Intersection theory on the space of curve moduli (handwritten 1991)
[16] [K2] Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function, Max Planck Institute, Arbeitstagung lecture 1991
[17] [K3] Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys.146
[18] [Kr] Krichever, I.M.: Topological minimal models and soliton equations (reprint 1991)
[19] [Mu] Mumford, D.: Tata lectures on theta II. Boston, Basel., Stuttgart: Birkhäuser 1984 · Zbl 0549.14014
[20] [MM] Magnano, G., Magri, F.: Poisson- Nyenhuis structures and Sato hierarchy, preprint 1991 · Zbl 0752.35021
[21] [Me] Mehta, M. L.: Random matrices in Nuclear Physics and Number theory. Contemp. Math.50, 295–309 (1986)
[22] [McK] McKean, H. P.: Compatible bracket in Hamiltonian mechanics, reprint 1991; Harvard-Brandeis-MIT Colloquium talk (Spring 91)
[23] [N] Nahm, W.: Conformal quantum field theories in two dimensions (to appear) · Zbl 0631.58042
[24] [R] Radul, A. O.: Lie algebras of differential operators, their central extensions, andW-algebras. Funct. Anal. Appl.25, 33–49 (1991) · Zbl 0809.47044
[25] [Rai] Raina, A.: Fay’s trisecant identity and Wick’s, theorem: an algebraic geometry viewpoint. Exp. Math8, 227–245 (1990) · Zbl 0724.32015
[26] [Sa] Sato, M.: Soliton equations and the universal Grassmann manifold (by Noumi in Japanese), Math. Lect. Note Ser. no 18. Sophia University, Tokyo, 1984 · Zbl 0541.58001
[27] [SW] Segal, G., Wilson, G.: Loop groups and equations of KdV type. IHES Publ. Math.61, 5–65 (1985) · Zbl 0592.35112
[28] [Schw] Schwarz, A.: On the solutions to the string equation. Mod. Phys. Lett. A,29, 2713–2725 (1991) · Zbl 1020.37579
[29] [Sh] Shiota, T.: On the equation [Q, P]=1 (preprint 1991)
[30] [S] Smit, D. J.: A Quantum Group structure in Integrable conformal field theories. Commun. Math. Phys.128, 1–37 (1990) · Zbl 0701.17010
[31] [W1] Witten, Ed.: Two-dimensional gravity and intersection theory, of moduli space, Harvard University lecture, May 1990. Diff. Geometry 1991
[32] [W2] Witten, Ed.: On the Kontsevich Model and other Models of Two Dimensional Gravity, IASSNS-HEP-91/24 (6/1991) preprint
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.