Fruchard, Augustin Canards and rakes. (Canards et râteux.) (French) Zbl 0756.39003 Ann. Inst. Fourier 42, No. 4, 825-855 (1992). We study the phenomenon of bifurcation delay in discrete dynamic planar systems. The distinction of one invariant curve for the system reduces the study of this phenomenon to the study of one object. We demonstrate the presence of bifurcation delay in oscillating analytic systems. We present a new phenomenon discovered experimentally which appears for non inversible systems: the invariant curve has a series of exponentially tight poles. We demonstrate this phenomenon on two examples. These examples establish a link between the phenomenon of bifurcation delay and the asymptotic behaviour of special or arithmetic functions. Reviewer: A.Fruchard Cited in 3 Documents MSC: 39A10 Additive difference equations 93C55 Discrete-time control/observation systems 33C15 Confluent hypergeometric functions, Whittaker functions, \({}_1F_1\) Keywords:\(q\)-difference equation; hypergeometric confluent function; discrete dynamical system; dynamic bifurcation; discret canard; rake; slow-fast application; non-standard analysis; difference equation × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML References: [1] [A] , Modular functions and Dirichlet series in number theory, Graduate Texts in Mathematics, Springer Verlag, 1976. · Zbl 0332.10017 [2] [1] , Harmonische Räume und ihre Potentialtheorie, Springer Lecture Notes in Mathematics 22 (1966). · Zbl 0756.34042 [3] Flach, Matthias [4] [B2] , Courbes invariantes d’une application lente-rapide analytique de C × C et retard à la bifurcation de dédoublement de période, preprint Warwick, 1990. · Zbl 0802.58047 [5] [BCDD] , , , , Chasse au canard, Collectanea Mathematica, 32, 1-3 (1981), 37-119. · Zbl 0529.34046 [6] [C] , Champs lents-rapides de C2. [7] [DD] , , Leçons de calcul infinitésimal, Armand Colin, 1989. [8] [DR] , , Analyse non standard, Hermann, 1989. · Zbl 0682.26010 [9] [E] et al., Higher transcendental functions, McGraw-Hill Bool Co., New York, 1953. · Zbl 0052.29502 [10] [F] , Canards discrets, Note aux CRAS, 307, série I (1988), 41-46. · Zbl 0652.58031 [11] [GR] , , Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, G.C. rota éd., 35 (1990). · Zbl 0695.33001 [12] [HW] , , An introduction to the theory of numbers, Oxford Science Publications, 1938. · JFM 64.0093.03 [13] [Ha2] , On the rigidity of PL representations of a surface group, preprint. · Zbl 0829.57016 [14] [I] , Asymptotics of analytic difference equations, Springer Lecture Notes in Math., 1085, Heidelberg (1984). · Zbl 0548.39001 [15] [N] , Persistence of stability loss of dynamical bifurcations, Differentsial’nye Uravneniya, 23, 12 (1987), 2060-2067 et 24, 2 (1988), 226-233. · Zbl 0716.34064 [16] [Ne] , Internal set theory, Bulletin A.M.S., 83, 6 (1977). · Zbl 0373.02040 [17] [No] , Leçons sur les séries d’interpolation, Gauthier-Villars, 1926. · JFM 52.0301.04 [18] [R] , Non-standard analysis, North-Holland, 1966. · Zbl 0151.00803 [19] [T1] , Fonctions hypergéométriques confluentes, Mémorial des Sciences Mathématiques, 115 (1960). · Zbl 0087.28002 [20] [T2] , Asymptotische Eigenschaften der unvkollständigen Gammafunktion, Mathematische Zeitschrift, 53 (1950), 136-148. · Zbl 0038.22105 [21] [VdB] , Non standard asymptotic analysis, Springer Lecture Notes in Math., 1249, Heidelberg (1987). · Zbl 0633.41001 [22] [W1] , Entrée-sortie dans un tourbillon, Ann. Inst. Fourier, 36, 4 (1986), 157-184. · Zbl 0593.76032 [23] [W2] , Surstabilité pour un champ de vecteurs lent-rapide analytique et planaire, Ann. Inst. Fourier, 40, 3 (1990), 557-595. · Zbl 0702.34008 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.