Breslauer, Dany; Galil, Zvi A lower bound for parallel string matching. (English) Zbl 0756.68048 SIAM J. Comput. 21, No. 5, 856-862 (1992). Summary: This paper presents an \(\Omega(\log\log m)\) lower bound on the number of rounds necessary for finding occurrences of a pattern string \(P[1\dots m]\) in a text string \(T[1\dots 2m]\) in parallel using \(m\) comparisons in each round. The bound in within a constant factor of the fastest algorithm for this problem [D. Breslauer and Z. Galil, SIAM J. Comput. 19, 1051-1058 (1990; Zbl 0711.68057)] and also holds for an \(m\)-processor CRCW-PRAM in the case of a general alphabet. Consequently, the paper derives the parallel complexity of the string matching problem using \(p\) processors for general alphabets, which is\(\bullet\) \(\Theta\left({m\over p}\right)\) if \(p\leq{m\over \log\log m}\),\(\bullet\;\Theta(\log\log m)\) if \({m\over\log\log m}\leq p\leq m\),\(\bullet\;\Theta(\log\log_{2p/m}p)\) if \(m\leq p\leq m^ 2\),\(\bullet\;\Theta(1)\) if \(p\geq m^ 2\),or in short \(\Theta(\lceil{m\over p}\rceil+\log\log_{\lceil 1+p/m\rceil}2p)\). Cited in 3 ReviewsCited in 13 Documents MSC: 68Q25 Analysis of algorithms and problem complexity 68W10 Parallel algorithms in computer science 68W15 Distributed algorithms Keywords:period; lower bound; CRCW-PRAM; string matching Citations:Zbl 0711.68057 PDF BibTeX XML Cite \textit{D. Breslauer} and \textit{Z. Galil}, SIAM J. Comput. 21, No. 5, 856--862 (1992; Zbl 0756.68048) Full Text: DOI