×

Scaling limits for the block counting process and the fixation line for a class of \(\Lambda\)-coalescents. (English) Zbl 1494.60089

Summary: We provide scaling limits for the block counting process and the fixation line of \(\Lambda\)-coalescents as the initial statentends to infinity under the assumption that the measure \(\Lambda\) on [0,1] satisfies \(\int_{[0,1]}u^{-1}|\Lambda-b\lambda|(\mathrm{d}u)<\infty\) for some \(b \geq 0\). Here \(\lambda\) denotes the Lebesgue measure on \([0,1]\). The main result states that the block counting process, properly transformed, converges in the Skorohod space to a generalized Ornstein-Uhlenbeck process as \(n\) tends to infinity. The result is applied to beta coalescents with parameters 1 and \(b >0\). We split the generators into two parts by additively decomposing \(\Lambda\) into a ‘Bolthausen-Sznitman part’ \(b \lambda\) and a ‘dust part’ \(\Lambda-b \lambda\) and then prove the uniform convergence of both parts separately.

MSC:

60J90 Coalescent processes
60J27 Continuous-time Markov processes on discrete state spaces
PDFBibTeX XMLCite
Full Text: arXiv Link

References:

[1] Applebaum, D. Lévy processes and stochastic calculus, volume 116 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition (2009). ISBN 978-0-521-73865-1. MR2512800. · Zbl 1200.60001
[2] Baur, E. and Bertoin, J. The fragmentation process of an infinite recursive tree and Ornstein-Uhlenbeck type processes. Electron. J. Probab., 20, no. 98, 20 (2015). MR3399834. · Zbl 1333.60186
[3] Berestycki, N. Recent progress in coalescent theory, volume 16 of Ensaios Matemáticos. Sociedade Brasileira de Matemática, Rio de Janeiro (2009). ISBN 978-85-85818-40-1. MR2574323. · Zbl 1204.60002
[4] Bogachev, V. I., Röckner, M., and Schmuland, B. Generalized Mehler semigroups and applications. Probab. Theory Related Fields, 105 (2), 193-225 (1996). MR1392452. · Zbl 0849.60066
[5] Bolthausen, E. and Sznitman, A.-S. On Ruelle’s probability cascades and an abstract cavity method. Comm. Math. Phys., 197 (2), 247-276 (1998). MR1652734. · Zbl 0927.60071
[6] Böttcher, B. Feller evolution systems: generators and approximation. Stoch. Dyn., 14 (3), 1350025, 15 (2014). MR3213184. · Zbl 1321.47095
[7] de Branges, L. The Stone-Weierstrass theorem. Proc. Amer. Math. Soc., 10, 822-824 (1959). MR113131. · Zbl 0092.11801
[8] Ethier, S. N. and Kurtz, T. G. Markov processes. Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York (1986). ISBN 0-471-08186-8. MR838085. · Zbl 0592.60049
[9] Gaiser, F. and Möhle, M. On the block counting process and the fixation line of exchangeable coalescents. ALEA Lat. Am. J. Probab. Math. Stat., 13 (2), 809-833 (2016). MR3546382. · Zbl 1346.60124
[10] Gnedin, A., Iksanov, A., and Marynych, A. On Λ-coalescents with dust component. J. Appl. Probab., 48 (4), 1133-1151 (2011). MR2896672. · Zbl 1242.60077
[11] Goldschmidt, C. and Martin, J. B. Random recursive trees and the Bolthausen-Sznitman coalescent. Electron. J. Probab., 10, no. 21, 718-745 (2005). MR2164028. · Zbl 1109.60060
[12] Hénard, O. The fixation line in the Λ-coalescent. Ann. Appl. Probab., 25 (5), 3007-3032 (2015). MR3375893. · Zbl 1325.60124
[13] Kukla, J. and Möhle, M. On the block counting process and the fixation line of the Bolthausen-Sznitman coalescent. Stochastic Process. Appl., 128 (3), 939-962 (2018). MR3758343. · Zbl 1390.60089
[14] Limic, V. and Talarczyk, A. Second-order asymptotics for the block counting process in a class of regularly varying Λ-coalescents. Ann. Probab., 43 (3), 1419-1455 (2015). MR3342667. · Zbl 1327.60143
[15] Möhle, M. The Mittag-Leffler process and a scaling limit for the block counting process of the Bolthausen-Sznitman coalescent. ALEA Lat. Am. J. Probab. Math. Stat., 12 (1), 35-53 (2015). MR3333734. · Zbl 1329.60271
[16] Möhle, M. The rate of convergence of the block counting process of exchangeable coalescents with dust. ALEA Lat. Am. J. Probab. Math. Stat., 18 (2), 1195-1220 (2021). MR4282186. · Zbl 1477.60050
[17] Pitman, J. Coalescents with multiple collisions. Ann. Probab., 27 (4), 1870-1902 (1999). MR1742892. · Zbl 0963.60079
[18] Ranga Rao, R. Relations between weak and uniform convergence of measures with applications. Ann. Math. Statist., 33, 659-680 (1962). MR137809. · Zbl 0117.28602
[19] Revuz, D. and Yor, M. Continuous martingales and Brownian motion, volume 293 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, third edition (1999). ISBN 3-540-64325-7. MR1725357. · Zbl 0917.60006
[20] Sagitov, S. The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab., 36 (4), 1116-1125 (1999). MR1742154. · Zbl 0962.92026
[21] Sato, K.-i. Lévy processes and infinitely divisible distributions, volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1999). ISBN 0-521-55302-4. MR1739520. · Zbl 0973.60001
[22] Sato, K.-i. and Yamazato, M. Operator-self-decomposable distributions as limit distributions of pro-cesses of Ornstein-Uhlenbeck type. Stochastic Process. Appl., 17 (1), 73-100 (1984). MR738769. · Zbl 0533.60021
[23] Schweinsberg, J. Coalescents with simultaneous multiple collisions. Electron. J. Probab., 5, Paper no. 12, 50 (2000a). MR1781024. · Zbl 0959.60065
[24] Schweinsberg, J. A necessary and sufficient condition for the Λ-coalescent to come down from infinity. Electron. Comm. Probab., 5, 1-11 (2000b). MR1736720. · Zbl 0953.60072
[25] Shiga, T. A recurrence criterion for Markov processes of Ornstein-Uhlenbeck type. Probab. Theory Related Fields, 85 (4), 425-447 (1990). MR1061937. · Zbl 0677.60088
[26] Siegmund, D. The equivalence of absorbing and reflecting barrier problems for stochastically mono-tone Markov processes. Ann. Probability, 4 (6), 914-924 (1976). MR431386. · Zbl 0364.60109
[27] Steutel, F. W. and van Harn, K. Infinite divisibility of probability distributions on the real line, volume 259 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York (2004). ISBN 0-8247-0724-9. MR2011862. · Zbl 1063.60001
[28] Whittaker, E. T. and Watson, G. N. A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcenden-tal functions. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1996). ISBN 0-521-58807-3. MR1424469. · Zbl 0951.30002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.