Graef, John R.; Spikes, Paul W. On the oscillation of an \(n\)th-order nonlinear neutral delay differential equation. (English) Zbl 0757.34058 J. Comput. Appl. Math. 41, No. 1-2, 35-40 (1992). The authors study the neutral delay differential equation \[ [y(t)+P(t)y(g(t))]^{(n)}+\delta Q(t)f(y(h(t)))=0,\qquad n\geq 1,\quad t\geq t_ 0>0,\tag{E} \] where \(\delta=\pm 1\), \(P,Q,g,h: [t_ 0,\infty)\to R_ +\) are continuous functions, \(g(t)\leq t\), \(h(t)\leq t\), \(g(t)\to \infty\), \(h(t)\to\infty\) as \(t\to\infty\); \(f: R\to R\) is continuous with \(uf(u)>0\) for \(u\neq 0\). This paper contains two theorems which give sufficient conditions under which any (bounded) solution of (E) is either oscillatory or \(y(t)\to 0\) as \(t\to\infty\). Reviewer: P.Marušiak (Žilina) Cited in 6 Documents MSC: 34K99 Functional-differential equations (including equations with delayed, advanced or state-dependent argument) 34K40 Neutral functional-differential equations 34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations Keywords:neutral delay differential equation; oscillatory PDF BibTeX XML Cite \textit{J. R. Graef} and \textit{P. W. Spikes}, J. Comput. Appl. Math. 41, No. 1--2, 35--40 (1992; Zbl 0757.34058) Full Text: DOI References: [1] Bainov, D. D.; Myshkis, A. D.; Zahariev, A. I., Asymptotic and oscillatory properties of a class of operator-differential inequalities, Ann. Mat. Pura Appl., 143, 4, 197-205 (1986) · Zbl 0615.34052 [2] Bainov, D. D.; Myshkis, A. D.; Zahariev, A. I., On the oscillatory properties of the solutions of non-linear neutral functional differential equations of second order, Hiroshima Math. J., 19, 203-208 (1989) · Zbl 0715.34124 [3] Brayton, R. K., Bifurcation of periodic solutions in a nonlinear difference-differential equation of neutral type, Quart. Appl. Math., 24, 215-224 (1966) · Zbl 0143.30701 [4] Brayton, R. K., Nonlinear oscillations in a distributed network, Quart. Appl. Math., 24, 289-301 (1967) · Zbl 0166.35102 [6] Èlsgoĺc, L.È., Qualitative Methods in Mathematical Analysis, (Transl. Math. Monographs, 12 (1964), Amer. Mathematical Soc: Amer. Mathematical Soc Providence, RI) [7] Graef, J. R.; Grammatikopoulos, M. K.; Spikes, P. W., Asymptotic properties of solutions of nonlinear neutral delay differential equations of the second order, Rad. Mat., 4, 133-149 (1988) · Zbl 0662.34070 [8] Graef, J. R.; Grammatikopoulos, M. K.; Spikes, P. W., On the behavior of solutions of a first order nonlinear neutral delay differential equation, Appl. Anal., 40, 111-121 (1991) · Zbl 0736.34061 [9] Graef, J. R.; Grammatikopoulos, M. K.; Spikes, P. W., Asymptotic and oscillatory behavior of solutions of first order nonlinear neutral delay differential equations, J. Math. Anal. Appl., 155, 562-571 (1991) · Zbl 0732.34059 [10] Graef, J. R.; Grammatikopoulos, M. K.; Spikes, P. W., On the asymptotic behavior of solutions of a second order nonlinear neutral delay differential equation, J. Math. Anal. Appl, 156, 23-39 (1991) · Zbl 0731.34088 [13] Grammatikopoulos, M. K.; Grove, E. A.; Ladas, G., Oscillation and asymptotic behavior of neutral differential equations with deviating arguments, Appl. Anal., 22, 1-19 (1986) · Zbl 0566.34057 [14] Grammatikopoulos, M. K.; Grove, E. A.; Ladas, G., Oscillations of first order neutral delay differential equations, J. Math. Anal. Appl., 120, 510-520 (1986) · Zbl 0566.34056 [15] Grammatikopoulos, M. K.; Ladas, G.; Meimaridou, A., Oscillation and asymptotic behavior of higher order neutral equations with variable coefficients, Chinese Ann. Math. Ser. B, 9, 322-328 (1988) · Zbl 0672.34066 [17] Huang, Q.; Chen, S., Oscillation of neutral differential equations with periodic coefficients, Proc. Amer. Math. Soc., 110, 997-1001 (1990) · Zbl 0727.34062 [18] Jaroš, J.; Kusano, T., On a class of first order nonlinear functional differential equations of neutral type, Czechoslovak Math. J., 40, 115, 475-490 (1990) · Zbl 0728.34083 [19] Jaroš, J.; Kusano, T., Oscillation properties of first order nonlinear functional differential equations of neutral type, Differential Integral Equations, 4, 423-436 (1991) · Zbl 0729.34054 [20] Ladas, G.; Sficas, Y. G., Oscillation of neutral delay differential equations, Canad. Math. Bull., 29, 438-445 (1986) · Zbl 0566.34054 [21] Lalli, B. S., Sufficient conditions for oscillations of certain neutral delay differential equations, (Aftabizadeh, A. R., Differential Equations and Applications, II (1989), Ohio Univ. Press: Ohio Univ. Press Athens, OH), 93-100 · Zbl 0711.34087 [22] Xu, Y. T., Asymptotic behavior of nonoscillatory solutions of higher-order neutral equations, Ann. Differential Equations, 5, 199-209 (1989) · Zbl 0681.34061 [23] Zahariev, A. I.; Bainov, D. D., On some oscillation criteria for a class of neutral type functional differential equations, J. Austral. Math. Soc. Ser. B, 28, 229-239 (1986) · Zbl 0615.34066 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.