zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On convex-Suslin spaces. (English) Zbl 0757.46007
We introduce a class of topological spaces which contains the $K$-Suslin spaces and the semi-reflexive spaces with ${\cal C}$-webs, in the category of the locally convex spaces and which partially answers the Grothendieck conjecture.

46A30Open mapping and closed graph theorems; completeness
Full Text: DOI
[1] N. Bourbaki,Topologie générale. Chap. 9. Utilisation des nombres réels en topologie générale (Paris, 1958). · Zbl 0085.37103
[2] L. Schwartz, Sur le théorème du graphe fermé,C. R. Acad. Sc. Paris,263 (1966), 602--605. · Zbl 0151.19202
[3] A. Martineau, Sur les théorèmes de S. Banach et L. Schwartz concernant le graphe fermé,Studia Math.,30 (1968), 43--51. · Zbl 0177.41001
[4] M. Valdivia,Topics in locally convex spaces. North Holland (1982). · Zbl 0489.46001
[5] M. Valdivia, On the closed graph theorem in topological spaces,Manuscrip. Math.,23 (1978), 173--184. · Zbl 0367.46005 · doi:10.1007/BF01180572
[6] M. De Wilde, Réseaux dans les espaces linéaires à semi-normes,Mém. Soc. Liège,18 (1969).
[7] A. Grothendieck,Produits tensoriels topologiques et spaces nucléaires, Mem. Amer. Math. Soc. No.16 (1955).
[8] M. Valdivia, A class of locally convex spaces withoutC-webs,Ann. Inst. Fourier,32 (1982), 261--269. · Zbl 0478.46004
[9] G. Köthe,Topological Vector Spaces I, Springer (Berlin, 1983).