Lawton, Wayne M. Necessary and sufficient conditions for constructing orthonormal wavelet bases. (English) Zbl 0757.46012 J. Math. Phys. 32, No. 1, 57-61 (1991). Let \(h\) be an absolutely summable complex sequence whose Fourier transform \(m_0(\omega)=\sum_n h(n)\exp(-ni\omega)\) satisfies the conditions \(| m_ 0(\omega)|^2+| m_ 0(\omega+\pi)|^2=1\), \(m_0(0)=1\). A necessary and sufficient condition is given in order that the right frame of wavelets constructed from \(h\) be not an orthonormal basis of \(L^2(R)\). The mapping from sequences to wavelets defines a continuous map from a subset of \(\ell^2(Z)\) into \(L^2(R)\). Reviewer: Julian Musielak (Poznań) Cited in 3 ReviewsCited in 60 Documents MSC: 46B15 Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces 42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type 42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems Keywords:absolutely summable complex sequence; Fourier transform; right frame of wavelets; mapping from sequences to wavelets PDF BibTeX XML Cite \textit{W. M. Lawton}, J. Math. Phys. 32, No. 1, 57--61 (1991; Zbl 0757.46012) Full Text: DOI References: [1] DOI: 10.1137/0515056 · Zbl 0578.42007 [2] Haar A., Math. Ann. 69 pp 336– (1989) [3] DOI: 10.1016/0041-5553(62)90031-9 · Zbl 0163.39303 [4] DOI: 10.1016/0041-5553(64)90253-8 · Zbl 0148.39501 [5] DOI: 10.1090/S0025-5718-1977-0431719-X [6] Calderón A. P., Studia Math. 24 pp 113– (1964) [7] DOI: 10.1063/1.1664570 · Zbl 0162.58403 [8] DOI: 10.1063/1.1664833 · Zbl 0184.54601 [9] DOI: 10.1016/0370-1573(74)90023-4 [10] Burt P., IEEE Commun. Commun. 31 pp 482– (1983) [11] DOI: 10.1145/245.247 [12] DOI: 10.1137/0515056 · Zbl 0578.42007 [13] DOI: 10.1063/1.526761 · Zbl 0571.22021 [14] Grossman A., Ann Inst. H. Poincaré 45 pp 293– (1986) [15] DOI: 10.1063/1.527388 · Zbl 0608.46014 [16] DOI: 10.1109/18.57199 · Zbl 0738.94004 [17] DOI: 10.1063/1.526072 [18] Tchamitchian P., C. R. Acad. Sci. Paris 303 pp 215– (1986) [19] DOI: 10.1016/0375-9601(89)90003-0 [20] DOI: 10.4171/RMI/22 [21] Lemarié P. G., J. Math. Pures Appl. 67 pp 227– (1988) [22] Jaffard S., C. R. Acad. Sci. Paris 308 pp 79– (1989) [23] Jaffard S., J. Math. Pures Appl. 68 pp 95– (1989) [24] DOI: 10.1007/BF01205550 [25] DOI: 10.1007/BF01206144 [26] DOI: 10.1109/34.192463 · Zbl 0709.94650 [27] DOI: 10.1109/29.45554 [28] DOI: 10.1002/cpa.3160410705 · Zbl 0644.42026 [29] DOI: 10.1109/TASSP.1986.1164832 [30] DOI: 10.1109/29.32282 [31] DOI: 10.1109/29.32283 [32] Pollen D., J. Am. Math. Soc. 3 pp 611– (1990) [33] DOI: 10.1063/1.528688 · Zbl 0708.46020 [34] Oseledec V. I., Trans. Moscow Math. Soc. 19 pp 197– (1968) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.