Borne explicit du nombre de tores plats isospectraux à un tore donné. (Explicit bound of the number of flat tori isospectral to a given flat torus). (French) Zbl 0757.58040

The author gives an explicit bound of the number of isometry classes of flat \(n\)-dimensional tori isospectral to a given flat \(n\)-dimensional torus. The bound is expressed only in geometrical terms. In the particular case \(n=3\) the author proves that there exist 3612 of such classes.


58J50 Spectral problems; spectral geometry; scattering theory on manifolds
Full Text: DOI EuDML


[1] Berger M., Gauduchon P., Mazet E.–Le spectre d’une variété riemannienne, Lecture Notes in Math. Springer, 194, 1971 · Zbl 0223.53034
[2] Berry J.P.–Tores isospectraux en dimension 3, C. R. Acad. Sci. Sér. I Math.,292 (1981), 163–166 · Zbl 0464.58018
[3] Borel A.–Introduction aux groupes arithmétiques, Hermann, Actualités scientifiques et industrielles, 1341
[4] Cassels J.W.S.–An introduction to the geometry of numbers, Springer, 1959 · Zbl 0086.26203
[5] Kneser, M.–Lineare Relationen zwischen Darstellungszahlen quadratischer Formen, Math. Ann.,168 (1967), 31–39 · Zbl 0146.05901
[6] Kitaoka Y.–Positive definite quadratic forms with same representation numbers, Arch. Math.,28 (1977), 495–497 · Zbl 0361.10019
[7] Lekerkerker C.G.–Geometry of numbers, Wolters-Noordhoff, 1969
[8] Milnor J.–Eigenvalue of the Laplace operator on certain manifolds, Proc. Nat. Acad. Sci.,51 (1964), 542 · Zbl 0124.31202
[9] Wolpert S.–The eigenvalue spectrum as moduli for flat tori, Trans. Amer. Math. Soc.,244 (1978), 312–321 · Zbl 0405.58051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.