×

zbMATH — the first resource for mathematics

A posteriori error estimators in the finite element method. (English) Zbl 0757.65109
A structured approach to the a posteriori estimation of the error in the computed approximation is obtained via the finite element method.

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Aubin, J.P., Burchard, H.G. (1971): Some aspects of the method of the hypercircle applied to elliptic variational problems. In: Hubbard, B., ed., Numerical Solution of Partial Differential Equations-II SYNSPADE 1970. Academic Press, New York · Zbl 0264.65069
[2] Babu?ka I., Rheinboldt, W.C. (1981): A posteriori error analysis of finite element solutions for one dimensional problems. Siam J. Numer. Anal.18, 556-589 · Zbl 0487.65060
[3] Bramble, J.H., Schatz, A.H. (1977): Higher order local accuracy by averaging in the finite element method. Math. Comput.31, 94-111 · Zbl 0353.65064
[4] Ciarlet, P.G. (1978): The Finite Element Method for Elliptic Problems. North Holland, Amsterdam · Zbl 0383.65058
[5] Scott, R., Dupont, T.F. (1978): Constrictive polynomial approximation in Sobolev spaces. In: de Boor, C., Golub, G., eds., Recent Advances in Numerical Analysis. Academic Press, New York · Zbl 0456.65003
[6] Ekeland, I., T?mam R. (1976): Convex Analysis and Variational Problems. North Holland, Amsterdam · Zbl 0322.90046
[7] Kelly, D.W. (1984): The self-equilibration of residuals and complementary a posteriori error estimates in the finite element method. Int. J. Numer. Meth. Eng.20, 1491 · Zbl 0575.65100
[8] Kelly, D.W., Gago, R., Zienkiewicz, O.C., Babu?ka, I. (1983): A posteriori error analysis and adaptive processes in the finite element method. Part I ? Error Analysis. Int. J. Num. Meth. Eng.19, 1593-1619 · Zbl 0534.65068
[9] Kelly, D.W., Mills, R.J., Reizes, J.A., Miller, A.D.: (1987): A posteriori error estimates of the solution error caused by discretization in the finite element, finite difference and boundary element methods. Int. J. Numer. Meth. Eng.24, 1921 · Zbl 0625.65096
[10] K???ek M., Neitanm?ki, P. (1987): On a global superconvergence of the gradient of linear triangular elements. J. Comp. App. Math.18, 221-233 · Zbl 0602.65084
[11] K???ek M., Neitaanm?ki, P. (1987): On superconvergence techniques. Acta Applicandae Mathematicae9, 175-198 · Zbl 0624.65107
[12] Lesaint, P., Zl?mal, M. (1979): Superconvergence of the gradient of finite element solutions. RAIRO Anal. Num?r.13, 139-166 · Zbl 0412.65051
[13] Levine N. (1985): Superconvergent estimation of the gradient from linear finite element approximations on triangular elements. Reading University Numerical Analysis Report 3/85 · Zbl 0584.65067
[14] Schatz, A.H. (1974): An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp.28, 959-962 · Zbl 0321.65059
[15] Schumkaer, L.L. (1981): Spline functions: Basis theory. Wiley, New York
[16] Thom?e, V. (1977): High order local approximations to derivatives in the finite element method. Math. Comp.31, 652-660 · Zbl 0367.65055
[17] Zienkiewicz, O.C., Gago, J.P., Kelly, D.W. (1983): The hierarchical concept in the finite element method. Comp. and Struct.16, 53-65 · Zbl 0498.73072
[18] Zl?mal, M. (1975): Some superconvergence results in the finite element method. In Mathematical Aspects of Finite Element Methods: Proceedings of the conference held in Rome 1975. Springer Lecture Notes in Mathematics606
[19] Zl?mal, M. (1978): Superconvergence and reduced integration in the finite element method. Math. Comput.32, 663-685 · Zbl 0448.65068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.