×

zbMATH — the first resource for mathematics

The numerical solution of Volterra integral equations with nonsmooth solutions based on sinc approximation. (English) Zbl 0757.65148
The author discretizes the equation \[ y(x)=g(x)+\int^ x_ 0{k(x,t)\over (x-t)^ \alpha}y(t)dt,\quad 0\leq x\leq a, \] by the collocation method using the trial functions \(S(j,h,X)(x)=\text{sinc}((\phi_ X(x)-jh)/h)\), \(\{\phi_ X(z)=\log(z/(X-z))\), \(h>0\), \(0<X\leq a\). Assuming the analyticity of the data he proves the exponential convergence of the approximate solution.
Reviewer: G.Vainikko (Tartu)

MSC:
65R20 Numerical methods for integral equations
45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type)
PDF BibTeX Cite
Full Text: DOI
References:
[1] Brunner, H., Nonpolynomial spline collocation for Volterra equation with weakly singular kernels, SIAM J. numer. anal., 20, 1106-1119, (1983) · Zbl 0533.65087
[2] Brunner, H., The approximate solution of Volterra equations with nonsmooth solutions, Utilitas math., 27, 57-95, (1985) · Zbl 0563.65077
[3] Brunner, H., The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes, Math. comp., 45, 417-437, (1985) · Zbl 0584.65093
[4] Brunner, H.; van der Houwen, P.J., The numerical solution of Volterra equations, (1986), North-Holland Amsterdam · Zbl 0611.65092
[5] Brunner, H.; te Riele, H.J.J., Volterra-type integral equations of the second kind with nonsmooth solutions: high-order methods based on collocation techniques, J. integral equations, 6, 187-203, (1984) · Zbl 0543.65091
[6] Hairer, E.; Lubich, C.; Schlichte, M., Fast numerical solution of weakly singular Volterra integral equations, J. comput. appl. math., 23, 87-98, (1988) · Zbl 0654.65091
[7] de Hoog, F.; Weiss, R., High order methods for a class of Volterra integral equations with weakly singular kernels, SIAM J. numer. anal., 11, 1166-1180, (1974) · Zbl 0292.65067
[8] Linz, P., Numerical methods for Volterra integral equations with singular kernels, SIAM J. numer. anal., 6, 365-374, (1969) · Zbl 0185.42404
[9] Lubich, C., Fractional linear multistep methods for Abel-Volterra integral equations of the second kind, Math. comp., 45, 463-469, (1985) · Zbl 0584.65090
[10] Lund, J.; Bowers, K.L., Introduction to the method of sinc approximation, (1991), SIAM Philadelphia, PA · Zbl 0732.00028
[11] te Riele, H.J.J., Collocation methods for weakly singular second-kind Volterra integral equations with non-smooth solutions, IMA J. numer. anal., 2, 437-449, (1982) · Zbl 0501.65062
[12] Stenger, F., Numerical methods based on Whittaker cardinal or sinc functions, SIAM rev., 23, 165-224, (1981) · Zbl 0461.65007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.