×

Maximal monotone differential inclusions with memory. (English) Zbl 0758.34012

Let \(b\), \(r>0\), \(\hat T=[-r,b]\), \(T_ 0=[-r,0]\), \(T=[0,b]\). The paper is dealing with the following differential inclusion with memory, in \(\mathbb{R}^ N\): \((*)\) \(-\dot x(t)\in Ax(t)+F(t,x_ t)\) a.e. on \(T\); \(x(v)=\varphi(v)\), \(v\in T_ 0\), where \(x_ t\in C(T_ 0;\mathbb{R}^ N)\), \(x_ t(s)=x(t+s)\), \(A:D(A)\subset\mathbb{R}^ N\to 2^{\mathbb{R}^ N}\) is maximal monotone and \(F\) is a multifunction defined on \(T\times C(T_ 0,\mathbb{R}^ N)\) which satisfies some Carathéodory type conditions and \(| F(t,y)|=\sup\{\| v\|:v\in F(t,y)\}\leq a(t)+b(t)\| y\|_ \infty\) a.e. \((a,b\in L^ 1_ +)\). The author proves two theorems on the existence of a solution \(x\in C(\hat T;\mathbb{R}^ N)\); one involving convex-valued mappings \(F\) and the other nonconvex-valued ones. Then he considers a parametrized family of problems, where \(A\), \(F\) and \(\varphi\) depend on a parameter \(r\) and the continuous dependence on \(r\) of the solution set is proved. The last result says that under reasonable hypotheses on \(F\), the solution set of the nonconvex problem \((*)\) is dense in that of the convexified problem \((*)_ c\) with \(\overline{\text{conv}} F\) instead of \(F\).

MSC:

34A60 Ordinary differential inclusions
47J20 Variational and other types of inequalities involving nonlinear operators (general)
47J05 Equations involving nonlinear operators (general)
Full Text: DOI

References:

[1] Attouch, H., Variational Convergence for Functional and Operators (1984), London: Pitman, London · Zbl 0561.49012
[2] Aubin, J. -P; Cellina, A., Differential Inclusions (1983), Berlin: Springer, Berlin
[3] Avgerinos, E.; Papageorgiou, N. S., On the sensitivity and relaxability of optimal control problems governed by nonlinear evolution equations with state constraints, Monatsh. Math., 109, 1-23 (1990) · Zbl 0712.49025 · doi:10.1007/BF01298849
[4] Avgerinos, E.; Papageorgiou, N. S., Optimal control and relaxation for a class of nonlinear distributed parameter systems, Osaka J. Math., 27, 745-767 (1990) · Zbl 0716.49008
[5] Bressan, A., On differential relations with lower semicontinuous right hand side, J. Differ. Equ., 37, 89-97 (1980) · Zbl 0418.34017 · doi:10.1016/0022-0396(80)90090-X
[6] Brezis, H., Operateurs Maximaux Monotones (1973), Amsterdam: North Holland, Amsterdam · Zbl 0252.47055
[7] Cellina, A.; Marchi, M., Nonconvex perturbations of maximal monotone differential inclusions, Israel J. Math., 46, 1-11 (1983) · Zbl 0542.47036 · doi:10.1007/BF02760619
[8] Dunford, N.; Schwartz, J., Linear Operators I (1958), New Delhi: Wiley, New Delhi · Zbl 0084.10402
[9] Fryszkowski, A., Continuous selections for a class of nonconvex multivalued maps, Stud. Math., 76, 163-174 (1983) · Zbl 0534.28003
[10] Henry, C., Differential equations with discontinuous right hand side for planning procedures, J. Econ. Theory, 4, 545-551 (1972) · doi:10.1016/0022-0531(72)90138-X
[11] Kandilakis, D.; Papageorgiou, N. S., Nonsmooth analysis and approximation, J. Approx. Theory, 52, 58-81 (1988) · Zbl 0697.41015 · doi:10.1016/0021-9045(88)90037-8
[12] Klein, E.; Thompson, A., Theory of Correspondences (1984), New Delhi: Wiley, New Delhi · Zbl 0556.28012
[13] Kuratowski, K., Topology I (1966), New Delhi: Academic Press, New Delhi · Zbl 0158.40802
[14] Moreau, J. -J, Evolution problem associated with a moving convex set in a Hilbert space, J. Differ. Equ., 26, 347-374 (1977) · Zbl 0356.34067 · doi:10.1016/0022-0396(77)90085-7
[15] Mosco, U., Convergence of convex sets and solutions of variational inequalities, Adv. Math., 3, 510-585 (1969) · Zbl 0192.49101 · doi:10.1016/0001-8708(69)90009-7
[16] Papageorgiou, N. S., Convergence theorems for Banach space valued integrable multifunctions, Int. J. Math. Math. Sci., 10, 433-442 (1987) · Zbl 0619.28009 · doi:10.1155/S0161171287000516
[17] Papageorgiou, N. S., Measurable multifunctions and their applications to convex integral functionals, Int. J. Math. Math. Sci., 12, 175-192 (1989) · Zbl 0659.28008 · doi:10.1155/S0161171289000220
[18] Stacchetti, E., Analysis of a dynamic, decentralized exchange economy, J. Math. Econ., 14, 241-259 (1985) · Zbl 0605.90033 · doi:10.1016/0304-4068(85)90002-3
[19] Vrabie, I., Compactness Methods in Nonlinear Evolutions (1987), Essex: Longman, Essex · Zbl 0721.47050
[20] Wagner, D., Survey of measurable selection theorems, SIAM J. Control Optim., 15, 859-903 (1977) · Zbl 0407.28006 · doi:10.1137/0315056
[21] Warga, J., Optimal Control of Differential and Functional Equations (1970), New Delhi: Academic Press, New Delhi · Zbl 0205.16701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.