Mikelić, A. Homogenization of nonstationary Navier-Stokes equations in a domain with a grained boundary. (English) Zbl 0758.35007 Ann. Mat. Pura Appl., IV. Ser. 158, 167-179 (1991). Summary: We prove the convergence of the homogenization process for a nonstationary Navier-Stokes system in a porous medium. The result of homogenization is Darcy’s law, as in the case of the Stokes equation, but the convergence of pressures is in a different function space. Cited in 60 Documents MSC: 35B27 Homogenization in context of PDEs; PDEs in media with periodic structure 76D05 Navier-Stokes equations for incompressible viscous fluids 76S05 Flows in porous media; filtration; seepage Keywords:a priori estimates for pressure; convergence of the homogenization process; Darcy’s law PDFBibTeX XMLCite \textit{A. Mikelić}, Ann. Mat. Pura Appl. (4) 158, 167--179 (1991; Zbl 0758.35007) Full Text: DOI References: [1] Bensoussan, A.; Lions, J. L.; Papanicolau, G., Asympotic analysis for periodic structures (1978), Amsterdam: North-Holland, Amsterdam · Zbl 0404.35001 [2] Cattabriga, L., Su un problema di contorno relativo ai sistemi di equazioni di Stokes, Rend. Mat. Sem. Univ. Padova, 31, 308-340 (1961) · Zbl 0116.18002 [3] Grisvard, P., Elliptic problems in non-smooth domains (1985), London: Pitman, London · Zbl 0695.35060 [4] Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires (1969), Paris: Dunod, Paris · Zbl 0189.40603 [5] Rudin, W., Functional analysis (1973), New York: McGraw-Hill, New York · Zbl 0253.46001 [6] Sanchez-Palencia, E., Nonhomogeneous media and vibration theory, Lecture Notes in Physics,127 (1980), Berlin: Springer-Verlag, Berlin · Zbl 0432.70002 [7] Tartar, L., Incompressible fluid flow in a porous medium-convergence of the homogenization process, Appendix to Lecture Notes in Physics,127 (1980), Berlin: Springer-Verlag, Berlin [8] Temam, R., Navier-Stokes equations (1979), Amsterdam: North-Holland, Amsterdam · Zbl 0426.35003 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.