zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Asymptotic expansions for second-order linear difference equations. (English) Zbl 0758.39005
Using the method of successive approximations, asymptotic formal series solutions of the linear second-order difference equation $x\sb{n+2}+a\sb nx\sb{n+1}+b\sb nx\sb n=0$, where $a\sb n$ and $b\sb n$ have asymptotic expansions of the form $a\sb n\sim\Sigma((c\sb i/n\sp i)$; $i=0,\dots,\infty)$ and $b\sb n\sim\Sigma((d\sb i/n\sp i;i=0,\dots,\infty)$, for large values of $n$, and $d\sb 0\ne 0$, are obtained.
Reviewer: H.Länger (Wien)

MSC:
39A10Additive difference equations
WorldCat.org
Full Text: DOI
References:
[1] Adams, C. R.: On the irregular cases of linear ordinary difference equations. Trans. amer. Math. soc. 30, 507-541 (1928) · Zbl 54.0483.01
[2] Bender, E. A.: Asymptotic methods in enumeration. SIAM rev. 16, 485-515 (1974) · Zbl 0294.05002
[3] Bender, C. M.; Orszag, S. A.: Advanced mathematical methods for scientists and engineers. (1978) · Zbl 0417.34001
[4] Birkhoff, G. D.: General theory of linear difference equations. Trans. amer. Math. soc. 12, 243-284 (1911) · Zbl 42.0359.02
[5] Birkhoff, G. D.: Formal theory of irregular linear difference equations. Acta math. 54, 205-246 (1930) · Zbl 56.0402.01
[6] Birkhoff, G. D.; Trjitzinsky, W. J.: Analytic theory of singular difference equations. Acta math. 60, 1-89 (1932) · Zbl 0006.16802
[7] Erdélyi, A.: Asymptotic expansions. (1956) · Zbl 0070.29002
[8] Hunter, C.: Asymptotic solutions of certain linear difference equations, with applications to some eigenvalue problems. J. math. Anal. appl. 24, 279-289 (1968) · Zbl 0197.06601
[9] Immink, G. K.: Asymptotics of analytic difference equations. Lecture notes in math. 1085 (1984) · Zbl 0548.39001
[10] Ince, E. L.: Ordinary differential equations. (1927) · Zbl 53.0399.07
[11] Magnus, W.; Oberhettinger, F.; Soni, R. P.: Formulas and theorems for special functions of mathematical physics. (1966) · Zbl 0143.08502
[12] Olver, F. W. J.: Asymptotics and special functions. (1974) · Zbl 0303.41035
[13] Tricomi, F. G.: Equazioni differenziali. (1953)
[14] Wimp, J.: Computation with recurrence relations. (1983) · Zbl 0543.65084
[15] Wimp, J.: Review of R. Wong’s book ’asymptotic approximations of integrals’. Math. comp. 56, 388-394 (1991)
[16] Wimp, J.; Zeilberger, D.: Resurrecting the asymptotics of linear recurrences. J. math. Anal. appl. 111, 162-176 (1985) · Zbl 0579.05007
[17] R. Wong and H. Li, Asymptotic expansions for second-order linear difference equations, II, Stud. Appl. Math., to appear. · Zbl 0780.39005