×

Quadratic splines interpolating derivatives. (English) Zbl 0758.41005

Let \(\Delta_ x=\{x_ i: i=o(1)n+1\}\) be an increasing set of knots and let \(S(2,\Delta_ x)\) be the set of spline functions \(s\) satisfying the conditions: \(s\in C^ 1[x_ 0,x_{n+1}]\), \(s\) is a quadratic polynomial on each interval \([x_ i,x_{i+1}]\), \(i=o(1)n\). The author proves that there exists a unique spline function \(s\in S(2,\Delta_ x)\) verifying the conditions \(s'(x_ i)=m_ i\), \(i=o(1)n+1\) (interpolation conditions) and \(s(x_ 0)=s_ 0\) (the initial condition). One studies the existence and the uniqueness of a spline function \(s\in S(2,\Delta_ x)\) taking given values for the first and the second derivatives at the interpolation points \(t_ i\), \(i=o(1)n\), i.e. on the mesh \[ (\Delta_ x\Delta_ t): x_ 0\leq t_ 0<x_ 1<t_ 1<\cdots< t_ n\leq x_{n+1}, \] are verified conditions of the form \(s'(t_ i)=m_ i\) and \(s''(t_ i)=M_ i\), \(i=o(1)n\). The author gives algorithms for determining the parameters involved in the calculations of these splines.

MSC:

41A05 Interpolation in approximation theory
41A15 Spline approximation

Keywords:

uniqueness
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] Anwar M.N.: A direct cubic spline approach for IVP’s. in [9] , 9-18.
[2] Berg L.: Differenzengleichungen zweiter Ordnung mit Anwendungen. DVW Berlin, 1979. · Zbl 0406.39001
[3] Boor C.de: A Practical Guide to Splines. Springer Verlag, N.Y. 1978. · Zbl 0406.41003
[4] Hřebíček J., Mikulík M.: Cubic splines preserving monotonicity and convexity. (in Czech), Num. Math. Phys. Metalurgy, Blansko 198E.
[5] Kobza J.: On algorithms for parabolic splines. Acta UPO, Fac.rer.nat., Math. XXIV, V. 88 (1987), 169-185. · Zbl 0693.65005
[6] Kobza J.: Some properties of interpolating quadratic spline. Acta UPO, Fac.rer.nat. 97 (1990) · Zbl 0748.41006
[7] Makarov V.L., Chlobystov V.V.: Spline-Approximation of Functions. (in Russian), Nauka, Moscow, 1983.
[8] Sallam S., El-Tarazi M.N.: Quadratic spline interpolation on uniform meshes. in [9], 145-150. · Zbl 0765.41014
[9] Schmidt J.W., Späth H. (eds.): Splines in Numerical Analysis. Akademie-Verlag, Berlin, 1989. · Zbl 0664.00022
[10] St\?čkin S.B., Subbotin J.N.: Splines in Numerical Analysis. (in Russian), Nauka, Moscow 1976.
[11] Usmani R.A.: On quadratic spline interpolation. BIT 27 (1987), 615-622. · Zbl 0631.41009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.