The automatic conversion of spinor equations to dyad form in MAPLE. (English) Zbl 0758.53047

Summary: A new package in the symbolic algebra system MAPLE is presented for the conversion of complicated spinor equations to their expansions with respect to a normalized spinor dyad. By following a simple index convention, we obtain a powerful computational tool with a straightforward and easy to use syntax. A number of examples, including nontrivial applications of the package to recent research, are provided.


53Z05 Applications of differential geometry to physics
83-04 Software, source code, etc. for problems pertaining to relativity and gravitational theory
68W30 Symbolic computation and algebraic computation


LaTeX; Maple; NP
Full Text: DOI


[1] Carminati, J., and McLenaghan, R. G. (1988).Ann. Inst. Henri Poincaré, Phys. theor. 48, 77.
[2] Carminati, J., Czapor, S. R., McLenaghan, R. G., and Williams, G. C. (1991).Ann. Inst. Henri Poincaré, Phys. theor. 54, 9.
[3] Carminati, J., and McLenaghan, R. G., (1991).J. Math. Phys. 32, 3135. · Zbl 0736.76081
[4] Char, B. W., Fee, G. J., Geddes, K. O., Gonnet, G. H., and Monagan, M. B. (1986).J. Symbolic Comp. 2, 179.
[5] Czapor, S. R. and McLenaghan, R. G. (1982).J. Math. Phys. 23, 2159. · Zbl 0495.53023
[6] Czapor, S. R. and McLenaghan, R. G. (1987).Gen. Rel. Grav. 19, 623. · Zbl 0613.53033
[7] Czapor, S. R., McLenaghan, R. G., and Carminati, J. (1989). InAbstracts Proc. of XII Int. Conf. on General Relativity and Gravitation, July 1989, Boulder (Colorado, USA).
[8] Hornfeldt, L. (1988). STENSORReference Manual, Version 2.3 (University of Stockholm, Dept. of Theoretical Physics).
[9] Kernighan, B. W. (1977).A System for Typesetting Mathematics?User’s Guide (Second Edition), Bell Laboratories Comp. Sci. Tech. Report 17.
[10] Kramer, D., Stephani, H., MacCallum, M. A. H., and Herlt, E. (1980).Exact Solutions of Einstein’s Field Equations (Cambridge University Press, Cambridge). · Zbl 0449.53018
[11] Lamport, L. (1985).LaTeX: A Document Preparation System (Addison-Wesley, New York). · Zbl 0852.68115
[12] Newman, E., and Penrose, R. (1962).J. Math. Phys. 3, 566. · Zbl 0108.40905
[13] Ossanna, J. F. (1976). NROFF/TROFFUser’s Manual, Bell Laboratories Comp. Sci. Tech. Report 54.
[14] Penrose, R. (1960).Ann. Phys. (NY) 10, 171. · Zbl 0091.21404
[15] Pirani, F. A. E. (1964). InLectures on General Relativity, W. Ford, ed. (Prentice-Hall, New York).
[16] Rinke, W., and Wünsch, V. (1981).Beitr. zur Analysis 18, 43.
[17] Sachs, R. K. (1964). InRelativity, Groups and Topology, B. S. DeWitt, ed. (Gordon and Breach, New York).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.