zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On maps with dense orbits and the definition of chaos. (English) Zbl 0758.58024
The article deals with a chaotic behaviour in dynamical systems. The object is to examine the relationship between the axioms for the most popular definitions of chaos in discrete systems. The focus is on a definitive analysis in the case of one-dimensional manifold. The dynamical systems are considered on the interval, on the Cantor set, on the circle. It must be noticed the paper “On the definition of chaos” [Z. Angew. Math. Mech. 69, 175-185 (1989; Zbl 0713.58035)] by {\it U. Kirchgraber} and {\it D. Stoffer}, where the same problem is discussed in some other sense.

MSC:
37D45Strange attractors, chaotic dynamics
54H20Topological dynamics
34D30Structural stability of ODE and analogous concepts
WorldCat.org
Full Text: DOI
References:
[1] M. Barge and J. Martin, Chaos, periodicity and snakelike continua , Trans. Amer. Math. Soc. 285 (1985), 355-365. JSTOR: · Zbl 0559.58014 · doi:10.2307/1999705 · http://links.jstor.org/sici?sici=0002-9947%28198505%29289%3A1%3C355%3ACPASC%3E2.0.CO%3B2-1&origin=euclid
[2] M. Barnsley, Fractals everywhere , Academic Press, NY, 1988. · Zbl 0691.58001
[3] P. Bergé, Y. Pomeau and C. Vidal, Order within chaos , Wiley, NY, 1984. · Zbl 0669.58022
[4] T.W. Chaundy and E. Phillips, The convergence of sequences defined by quadratic recurrence-formulae , Quart. J. Math., Oxford Ser. 7 (1936), 74-80. · Zbl 0013.25403
[5] E.A. Coddington and N. Levinson, Theory of ordinary differential equations , McGraw Hill, NY, 1955. · Zbl 0064.33002
[6] I.P. Cornfeld, S.V. Fomin and Ya Sinai, Ergodic theory , Springer Verlag, NY, 1982. · Zbl 0493.28007
[7] A. Denjoy, Sur les courbes definies par les equations differentielles a la surface du tore , Journal de Mathematique 9 (1932), 333-375. · Zbl 0006.30501 · eudml:234887
[8] R.L. Devaney, Chaotic dynamical systems , Addison Wesley, Redwood City, CA, 1987. · Zbl 1226.37030
[9] Gottschalk and Hedlund, Topological dynamics , A.M.S. Coll. Publ. 36 , AMS, Providence, RI, 1955. · Zbl 0067.15204
[10] J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems and bifurcations of vector fields , Springer Verlag, NY, 1983. · Zbl 0515.34001
[11] J.K. Hale, Ordinary differential equations , Wiley, NY, 1969. · Zbl 0186.40901
[12] H. Kneser, Regulare Kurvenscharen auf den Ringflachen , Math. Ann. 91 (1924), 135-154. · Zbl 50.0371.03 · doi:10.1007/BF01498385
[13] J. Nielson, On topologiske Afbildninger $\ldots$ , Matematisk Tidsskrift B (1928), 36-46.
[14] J. Nitecki, Topological dynamics on the interval , in Ergodic theory and dynamical systems II, A. Katok, ed., Birkhauser, Boston, 1982. · Zbl 0506.54035
[15] H. Poincaré, Oeuvres completes t. 1 , 137-158.
[16] C. Preston, Iterates of piecewise monotone mapping on an interval , Lectures in Mathematics 1347 , Springer Verlag, 1988. · Zbl 0684.58002
[17] E.R. Van Kampen, The topological transformations of a simple closed curve into itself , Amer. J. Math. 57 (1935), 142-152. JSTOR: · Zbl 0011.03801 · doi:10.2307/2371207 · http://links.jstor.org/sici?sici=0002-9327%28193501%2957%3A1%3C142%3ATTTOAS%3E2.0.CO%3B2-Q&origin=euclid
[18] T.W. Wieting, An introduction to abstract dynamical systems , Wiley, NY, 1991.