Silverman, Stephen On maps with dense orbits and the definition of chaos. (English) Zbl 0758.58024 Rocky Mt. J. Math. 22, No. 1, 353-375 (1992). The article deals with a chaotic behaviour in dynamical systems. The object is to examine the relationship between the axioms for the most popular definitions of chaos in discrete systems. The focus is on a definitive analysis in the case of one-dimensional manifold. The dynamical systems are considered on the interval, on the Cantor set, on the circle.It must be noticed the paper “On the definition of chaos” [Z. Angew. Math. Mech. 69, 175-185 (1989; Zbl 0713.58035)] by U. Kirchgraber and D. Stoffer, where the same problem is discussed in some other sense. Reviewer: G.Osipenko (St.Petersburg) Cited in 2 ReviewsCited in 58 Documents MSC: 37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior 54H20 Topological dynamics (MSC2010) 34D30 Structural stability and analogous concepts of solutions to ordinary differential equations Keywords:dense orbit; periodic points; topologically transitive; chaotic behaviour; dynamical systems; discrete systems Citations:Zbl 0713.58035 PDF BibTeX XML Cite \textit{S. Silverman}, Rocky Mt. J. Math. 22, No. 1, 353--375 (1992; Zbl 0758.58024) Full Text: DOI References: [1] M. Barge and J. Martin, Chaos, periodicity and snakelike continua , Trans. Amer. Math. Soc. 285 (1985), 355-365. JSTOR: · Zbl 0559.58014 [2] M. Barnsley, Fractals everywhere , Academic Press, NY, 1988. · Zbl 0691.58001 [3] P. Bergé, Y. Pomeau and C. Vidal, Order within chaos , Wiley, NY, 1984. · Zbl 0669.58022 [4] T.W. Chaundy and E. Phillips, The convergence of sequences defined by quadratic recurrence-formulae , Quart. J. Math., Oxford Ser. 7 (1936), 74-80. · Zbl 0013.25403 [5] E.A. Coddington and N. Levinson, Theory of ordinary differential equations , McGraw Hill, NY, 1955. · Zbl 0064.33002 [6] I.P. Cornfeld, S.V. Fomin and Ya Sinai, Ergodic theory , Springer Verlag, NY, 1982. · Zbl 0493.28007 [7] A. Denjoy, Sur les courbes definies par les equations differentielles a la surface du tore , Journal de Mathematique 9 (1932), 333-375. · Zbl 0006.30501 [8] R.L. Devaney, Chaotic dynamical systems , Addison Wesley, Redwood City, CA, 1987. · Zbl 1226.37030 [9] Gottschalk and Hedlund, Topological dynamics , A.M.S. Coll. Publ. 36 , AMS, Providence, RI, 1955. · Zbl 0067.15204 [10] J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems and bifurcations of vector fields , Springer Verlag, NY, 1983. · Zbl 0515.34001 [11] J.K. Hale, Ordinary differential equations , Wiley, NY, 1969. · Zbl 0186.40901 [12] H. Kneser, Regulare Kurvenscharen auf den Ringflachen , Math. Ann. 91 (1924), 135-154. · JFM 50.0371.03 [13] J. Nielson, On topologiske Afbildninger \(\ldots\) , Matematisk Tidsskrift B (1928), 36-46. [14] J. Nitecki, Topological dynamics on the interval , in Ergodic theory and dynamical systems II, A. Katok, ed., Birkhauser, Boston, 1982. · Zbl 0506.54035 [15] H. Poincaré, Oeuvres completes t. 1 , 137-158. [16] C. Preston, Iterates of piecewise monotone mapping on an interval , Lectures in Mathematics 1347 , Springer Verlag, 1988. · Zbl 0684.58002 [17] E.R. Van Kampen, The topological transformations of a simple closed curve into itself , Amer. J. Math. 57 (1935), 142-152. JSTOR: · Zbl 0011.03801 [18] T.W. Wieting, An introduction to abstract dynamical systems , Wiley, NY, 1991. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.