zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Enumeration of regular graphs 100 years ago. (English) Zbl 0759.05052
From the author’s abstract: Already in 1891 certain configurations were enumerated by the Dutch mathematician J. de Vries. These configurations correspond to small 3-regular and 4-regular graphs. In the same year the paper of Petersen on the theory of regular graphs was published. The work of J. de Vries is described below. The enumeration of 3-regular graphs with 10 vertices of 1966 is described; this was applied in chemistry and has been known as the first enumeration of these graphs until now. Some other examples of early results about configurations are mentioned, which were rediscovered much later in combinatorics.

MSC:
05C30Enumeration in graph theory
WorldCat.org
Full Text: DOI
References:
[1] Balaban, A. T.: Valence-isomerism of cyclopolyenes. Revue roumaine de chimie 12, 103 (1967)
[2] Barrau, J. A.: Bijdragen tot de theorie der configuraties. Thesis (1907) · Zbl 38.0516.03
[3] Barrau, J. A.: Over de combinatorische opgave Van Steiner. Verslag Van de gewone vergaderingen der wis- en natuurkundige afdeeling 17, 318-326 (1908) · Zbl 39.0281.03
[4] Christiansen, M.; Lützen, J.; Sabidussi, G.; Toft, B.: Julius Petersen bibliography. (1990)
[5] Gropp, H.: Configurations and the tutte conjecture. Ars combin. 29A, 171-177 (1990) · Zbl 0739.05016
[6] Gropp, H.: Non-symmetric configurations with deficiences 1 and 2. Ann. discrete math. (1990)
[7] Gropp, H.: The construction of all configurations (124, 163). Conference prachatice (CSFR) (1990)
[8] H. Gropp, Configurations and graphs, Discrete Math., to appear. · Zbl 0786.05088
[9] Gropp, H.: On the history of configurations. Conference San Sebastian (Spain) (1990) · Zbl 0757.51003
[10] Imrich, W.: Zehnpunktige kubische graphen. Aequationes math. 6, 6-10 (1971) · Zbl 0214.51401
[11] Kempe, A. B.: A memoir on the theory of mathematical form. Phil. transactions of the royal society of London 177, 1-70 (1886)
[12] König, D.: Theorie der endlichen und unendlichen graphen. (1936) · Zbl 62.0654.05
[13] Lützen, J.; Sabidussi, G.; Toft, B.: Julius Petersen 1839--1910, a biography. (1990) · Zbl 0756.01044
[14] Martinetti, V.: Sulle configurazioni piane ${\mu}$3. Ann. mat. Pura appl. 15, 1-26 (1887) · Zbl 19.0587.02
[15] Mulder, H. M.: Julius Petersen’s theory of graphs. (1990) · Zbl 0763.05084
[16] Petersen, J.: Die theorie der regulären graphs. Acta math. 15, 193-220 (1891) · Zbl 23.0115.03
[17] De Vries, J.: Over vlakke configuraties waarin elk punt met twee lijnen incident is, verslagen en mededeelingen der koninklijke akademie voor wetenschappen. Afdeeling natuurkunde 6, No. 3, 382-407 (1889)
[18] De Vries, J.: Sur LES configurations planes dont chaque point supporte deux droites. Rendiconti circolo mat. Palermo 5, 221-226 (1891) · Zbl 23.0560.01
[19] Van Der Woude, W.: Levensbericht Van Ján de Vries. Jaarboek der koninklijke nederlandse akademie Van wetenschappen, 206-209 (1940)