×

zbMATH — the first resource for mathematics

On the Lebesgue decomposition of a function relative to a \(p\)-ideal of an orthomodular lattice. (English) Zbl 0759.06009
Summary: We establish a decomposition theorem in which a finitely additive group- valued function defined on an orthomodular lattice is decomposed with respect to a \(p\)-ideal.

MSC:
06C15 Complemented lattices, orthocomplemented lattices and posets
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] BERAN L. : Orthomodular Lattices. Algebraic Approach. Academia Praha and D. Reidel Publishing Company, Dordrecht, 1984. · Zbl 0431.06008
[2] BLYTH T. S., JANOWITZ M. F.: Residuation Theory. Pergamon Press, Oxford, 1972. · Zbl 0301.06001
[3] CAPEK P.: Théoremes de décomposition en théorie de la mesure. C. R. Acad. Sc. Paris 285 A (1977), 537-539. · Zbl 0364.28002
[4] CAPEK P.: Decomposition theorems in Measure Theory. Math. Slovaca 31 (1981), 53 69. · Zbl 0452.28002
[5] d’ANDREA A. B., de LUCIA P., MORALES P.: The Lebesgue Decomposition Theorem and the Nikodym Convergence Theorem on an orthomodular poset. Atti Sem. Mat. Fis. Univ. Modena XXXIX (1991), 137-158. · Zbl 0747.28004
[6] DUNFORD N., SCHWARTZ J. T.: Linear Operators. Part I. J. Wiley and Sons, New York, 1988. · Zbl 0635.47003
[7] FICKER V.: An abstract formulation of the Lebesgue decomposition theorem. J. Austral. Math. Soc. 12 (1971), 101-105. · Zbl 0203.35901
[8] GREECHIE R. J.: Orthomodular lattices admitting no states. J. Combin. Theory. 10 (1971), 119-132. · Zbl 0219.06007
[9] GUDDER S., ZERBE J.: Generalized monotone convergence and Radon-Nikodym theorems. J. Math. Phys. 22 (1981), 2553-2561. · Zbl 0467.60003
[10] HOLLAND S. S. Jr: An orthocomplete orthomodular lattice is complete. Proc. Amer. Math. Soc. 24 (1970), 717-718. · Zbl 0192.33601
[11] KALMBACH G.: Orthomodular Lattices. Academic Press, London, 1983. · Zbl 0528.06012
[12] PALKO V.: On the Lebesgue decomposition of Gleason measures. Časopis Pěst. Mat 112 (1987), 1-5. · Zbl 0621.46058
[13] PALKO V.: A measure decomposition theorem. Math. Slovaca 38 (1988), 167-169. · Zbl 0635.28003
[14] RÜTTIMANN G. T.: Non Commutative Measure Theory. Habilitationsschrift, Universität Bern, 1980.
[15] RÜTTIMANN G. T.: Decomposition of cones of measures. Atti Sem. Mat. Fis. Univ. Modena XXXVIII (1990), 109-121. · Zbl 0739.46012
[16] RÜTTIMANN G. T., SCHINDLER C.: The Lebesgue decomposition of measures on orthomodular posets. Quart. J. Math. Oxford 37 (1986), 321-345. · Zbl 0617.46065
[17] SCHINDLER C.: Decomposition of Measures on Orthologics. Doctorat Dissertation, Universität Bern, 1986.
[18] SCHINDLER C.: The Lebesgue decomposition of measures on finite orthomodular posets. Proc. of First Winter School on Measure Theory, Liptovský Ján A. Dvurečenskij- S. Pulmannová. 1988, pp. 146-151. · Zbl 0681.28003
[19] TARANTINO C.: Decomposition theorems for finitely additive functions. Ricerche di Mat. 37 (1988), 137-148. · Zbl 0698.28003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.