×

zbMATH — the first resource for mathematics

Universal \(R\) matrices and invariants of quantum supergroups. (English) Zbl 0759.17011
Generalizing methods of Drinfeld, Kirillov, and Reshetikhin, the authors develop a general way to construct invariants of quantum supergroups via universal \(R\)-matrices. The details are carried out for the algebra \(U_ q(gl(2/1))\) to give some explicit invariants. They also compute eigenvalues for the invariants in general cases.

MSC:
17B37 Quantum groups (quantized enveloping algebras) and related deformations
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/BF00704588 · Zbl 0587.17004
[2] DOI: 10.1016/B978-0-12-400465-8.50019-5
[3] DOI: 10.1142/S0217751X89001503 · Zbl 0697.35131
[4] DOI: 10.1016/0550-3213(91)90369-9
[5] DOI: 10.1016/0550-3213(91)90369-9
[6] DOI: 10.1016/0550-3213(91)90369-9
[7] DOI: 10.1007/BF02097043 · Zbl 0701.17010
[8] DOI: 10.1007/BF02097043 · Zbl 0701.17010
[9] DOI: 10.1007/BF02097043 · Zbl 0701.17010
[10] DOI: 10.1007/BF02097043 · Zbl 0701.17010
[11] DOI: 10.1007/BF02097683 · Zbl 0723.35077
[12] DOI: 10.1007/BF02097683 · Zbl 0723.35077
[13] DOI: 10.1007/BF02097683 · Zbl 0723.35077
[14] DOI: 10.1016/0370-1573(89)90123-3
[15] DOI: 10.1016/0370-1573(89)90123-3
[16] DOI: 10.1016/0370-1573(89)90123-3
[17] DOI: 10.1007/BF02099115 · Zbl 0735.17018
[18] DOI: 10.1090/S0273-0979-1985-15304-2 · Zbl 0564.57006
[19] DOI: 10.1090/S0273-0979-1985-15361-3 · Zbl 0572.57002
[20] DOI: 10.1007/BF00401868 · Zbl 0694.17008
[21] DOI: 10.1142/S0217732390000925 · Zbl 1020.17503
[22] DOI: 10.1142/S0217732390000925 · Zbl 1020.17503
[23] DOI: 10.1016/0370-2693(90)91729-U · Zbl 1332.17015
[24] DOI: 10.1016/0370-2693(90)91729-U · Zbl 1332.17015
[25] DOI: 10.1016/0370-2693(90)91729-U · Zbl 1332.17015
[26] DOI: 10.1088/0305-4470/24/6/012 · Zbl 0727.17007
[27] Drinfeld V. G., Alg. Anal. 2 pp 30– (1988)
[28] DOI: 10.1088/0305-4470/24/5/009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.