zbMATH — the first resource for mathematics

Norm estimates in Besov and Lizorkin-Triebel spaces for the solutions of second-order linear hyperbolic equations. (English. Russian original) Zbl 0759.35014
J. Sov. Math. 56, No. 2, 2348-2389 (1991); translation from Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 171, 106-162 (1989).
See the review in Zbl 0725.35022.

35B45 A priori estimates in context of PDEs
35S10 Initial value problems for PDEs with pseudodifferential operators
35L15 Initial value problems for second-order hyperbolic equations
Full Text: DOI
[1] W. A. Strauss, ”On weak solutions of semilinear hyperbolic equations,” An. Acad. Brasil. Ciênc.,42, No. 4, 645–651 (1970). · Zbl 0217.13104
[2] J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires, Dunod, Gauthier-Villars, Paris (1969).
[3] O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer, New York (1985). · Zbl 0588.35003
[4] J. Ginibre and G. Velo, ”The global Cauchy problem for the non linear Klein-Gordon equation,” Math. Z.,189, No. 4, 487–505 (1985). · Zbl 0549.35108
[5] J. Ginibre and G. Velo, ”The global Cauchy problem for the non linear Klein-Gordon equation. II,” Ann. Inst. H. Poincaré Anal. Non Linéaire,6, No. 1, 15–35 (1989). · Zbl 0694.35153
[6] L. V. Kapitanskii, ”The Cauchy problem for a semilinear equation. I,” Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst.,163, 76–104 (1987).
[7] H. Pecher, ”Lp-Abschätzungen und klassische Lösungen für nichtlineare Wellengleichungen. I,” Math. Z.,150, No. 2, 159–183 (1976). · Zbl 0318.35054
[8] Ph. Brenner and W. von Wahl, ”Global classical solutions of nonlinear wave equations,” Math. Z.,176, No. 2, 87–121 (1981). · Zbl 0457.35059
[9] R. S. Strichartz, ”Convolutions with kernels having singularities on a sphere,” Trans. Amer. Math. Soc.,148, No. 2, 461–471 (1970). · Zbl 0199.17502
[10] R. S. Strichartz, ”A priori estimates for the wave equation and some applications,” J. Funct. Anal.,5, No. 2, 218–235 (1970). · Zbl 0189.40701
[11] Ph. Brenner, ”On Lp-Lp’, estimates for the wave-equation,” Math. Z.,145, No. 3, 251–254 (1975). · Zbl 0321.35052
[12] Ph. Brenner, ”Lp-Lp’-estimates for Fourier integral operators related to hyperbolic equations,” Math. Z.,152, 273–286 (1977). · Zbl 0325.35009
[13] Ph. Brenner, ”On the existence of global smooth solutions of certain semilinear hyperbolic equations,” Math. Z.,167, 99–135 (1979). · Zbl 0388.35048
[14] L. V. Kapitanskii, ”Some generalizations of the Strichartz-Brenner inequality,” Algebra Analiz,1, No. 3, 127–159(1989).
[15] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel (1983).
[16] S. G. Krein and Yu. I. Petunin, ”Scales of Banach spaces,” Usp. Mat. Nauk,21, No. 2, 89–168 (1966).
[17] L. Hörmander, The Analysis of Linear Partial Differential Operators. III. Pseudo-Differential Operators, Springer, Berlin (1985).
[18] O. A. Oleinik and E. V. Radkevich, Second Order Equations with nonnegative Characteristic Form, Am. Math. Soc., Providence (1973).
[19] J. Marschall, ”Some remarks on Triebel spaces,” Studia Math.,87, No. 1, 79–92 (1987). · Zbl 0653.46031
[20] J. Marschall, ”Pseudodifferential operators with nonregular symbols of the classs , {\(\delta\)} m ,” Comm. Partial Differential Equations,12, No. 8, 921–965 (1987). · Zbl 0621.47048
[21] B. Marshall, W. Strauss, and S. Wainger, ” Lpq -estimates for the Klein-Gordon equation,” J. Math. Pures Appl.,59, No. 4, 417–440 (1980). · Zbl 0457.47040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.