zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hyperconvex hulls of metric spaces. (English) Zbl 0759.54015
The author’s abstract: “The following facts are shown: (1) Each bounded hyperconvex space $X$ is a hyperconvex hull of the subspace $EX$ of $X$ whose elements are the endpoints of $X$; (2) The hyperconvex hull of $R\sp n$ … with the sum metric $d\sb 1$ is $R\sp{2n-1}$ with the maximum metric $d\sb \infty$.”.

54E40Special maps on metric spaces
54B30Categorical methods in general topology
Full Text: DOI
[1] Aronszajn, N.; Panitchpakdi, P.: Extension of uniformly continuous transformations and hyperconvex metric spaces. Pacific J. Math. 6, 405-439 (1956) · Zbl 0074.17802
[2] Cohen, W. B.: Injective envelopes of Banach spaces. Bull amer. Math. soc. 70, 723-726 (1964) · Zbl 0124.06505
[3] Dress, A. W. M.: Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces. Adv. in math. 53, 321-402 (1984) · Zbl 0562.54041
[4] Isbell, J. R.: Six theorems about injective metric spaces. Comment. math. Helv. 39, 65-74 (1964) · Zbl 0151.30205
[5] Isbell, J. R.: Injective envelopes of Banach spaces are rigidly attached. Bull. amer. Math. soc. 70, 727-729 (1984) · Zbl 0128.34503
[6] Lacey, H. E.; Cohen, H. B.: On injective envelopes of Banach spaces. J. funct. Anal. 4, 11-30 (1969) · Zbl 0175.41802
[7] Rao, N. V.: Letter to the author. (December 1989)