zbMATH — the first resource for mathematics

Area functionals and Godbillon-Vey cocycles. (English) Zbl 0759.57019
We investigate the natural domain of definition of the Godbillon-Vey 2- dimensional cohomology class of the group of diffeomorphisms of the circle. We introduce the notion of area functionals on a space of functions on the circle, we give a sufficiently large space of functions with nontrivial area functional and we give a sufficiently large group of Lipschitz homeomorphisms of the circle where the Godbillon-Vey class is defined.
Reviewer: T.Tsuboi

57R32 Classifying spaces for foliations; Gelfand-Fuks cohomology
57R30 Foliations in differential topology; geometric theory
58H10 Cohomology of classifying spaces for pseudogroup structures (Spencer, Gelfand-Fuks, etc.)
26A45 Functions of bounded variation, generalizations
26B15 Integration of real functions of several variables: length, area, volume
Full Text: DOI Numdam EuDML
[1] R. BOTT, On some formulas for the characteristic classes of group actions, Foliations and Gelfand-Fuks Cohomology, Proc. Rio de Janeiro, 1976, Lecture Notes in Math., Springer-Verlag, vol. 652 (1978). · Zbl 0393.57011
[2] G. DUMINY et V. SERGIESCU, Sur la nullité de l’invariant de godbillon-vey, C. R. Acad. Sci. Paris, 292 (1981), 821-824. · Zbl 0473.57015
[3] E. GHYS, Sur l’invariance topologique de la classe de godbillon-vey, Ann. Inst. Fourier, 37-4 (1987), 59-76. · Zbl 0633.58025
[4] E. GHYS, L’invariant de godbillon-vey, Seminaire Bourbaki, exposé n°706, 1988/1989. · Zbl 0707.57015
[5] E. GHYS et V. SERGIESCU, Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helv., 62 (1987), 185-239. · Zbl 0647.58009
[6] C. GODBILLON et J. VEY, Un invariant des feuilletages de codimension 1, C. R. Acad. Sci. Paris, 273 (1971), 92-95. · Zbl 0215.24604
[7] P. GREENBERG, Classifying spaces for foliations with isolated singularities, Transactions Amer. Math. Soc., 304 (1987), 417-429. · Zbl 0626.58030
[8] M. HERMAN, Sur la conjugaison differentiable des difféomorphismes du cercle à des rotations, Publ. Math. I. H. E. S., 49 (1979), 5-234. · Zbl 0448.58019
[9] S. HURDER and A. KATOK, Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, Publ. Math. I. H. E. S., 72 (1990), 2-61. · Zbl 0725.58034
[10] J. MATHER, The vanishing of the homology of certain groups of homeomorphisms, Topology, 10 (1971), 297-298. · Zbl 0207.21903
[11] J. MATHER, Integrability in codimension 1, Comm. Math. Helv., 48 (1973), 195-233. · Zbl 0284.57016
[12] J. MATHER, Commutators of diffeomorphisms I, II and III, Comm. Math. Helv., 49 (1974), 512-528; 50 (1975), 33-40; 60 (1985), 122-124. · Zbl 0299.58008
[13] J. MATHER, On the homology of Haefliger’s classifying space, Differential Topology, (1976), 71-116. · Zbl 0469.57021
[14] Y. MITSUMATSU, A relation between the topological invariance of the godbillon-vey invariant and the differentiability of Anosov foliations, Advanced Studies in Pure Math., 5, Foliations, (1985), 159-167. · Zbl 0653.57018
[15] W. THURSTON, Noncobordant foliations of S3, Bull. Amer. Math. Soc., 78 (1972), 511-514. · Zbl 0266.57004
[16] W. THURSTON, Foliations and groups of diffeomorphism, Bull. Amer. Math. Soc., 80 (1974), 304-307. · Zbl 0295.57014
[17] T. TSUBOI, On the homology of classifying spaces for foliated products, Advanced Studies in Pure Math., 5, Foliations, (1985), 37-120. · Zbl 0674.57023
[18] T. TSUBOI, On the foliated products of class C1, Annals of Math., 130 (1989), 227-271. · Zbl 0701.57012
[19] T. TSUBOI, On the hurder-katok extension of the godbillon-vey invariant, J. of Fac. Sci., Univ. of Tokyo, Sec. IA, 37 (1990), 255-262. · Zbl 0722.57012
[20] T. TSUBOI, Homological and dynamical study on certain groups of Lipschitz homeomorphisms of the circle, preprint. · Zbl 0852.57031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.