Georgiev, Danko D.; Glazebrook, James F. Thermal stability of solitons in protein \(\alpha\)-helices. (English) Zbl 1498.92139 Chaos Solitons Fractals 155, Article ID 111644, 19 p. (2022). Summary: Protein \(\alpha\)-helices provide an ordered biological environment that is conducive to soliton-assisted energy transport. The nonlinear interaction between amide I excitons and phonon deformations induced in the hydrogen-bonded lattice of peptide groups leads to self-trapping of the amide I energy, thereby creating a localized quasiparticle (soliton) that persists at zero temperature. The presence of thermal noise, however, could destabilize the protein soliton and dissipate its energy within a finite lifetime. In this work, we have computationally solved the system of stochastic differential equations that govern the quantum dynamics of protein solitons at physiological temperature, \(T=310\) K, for either a single isolated \(\alpha\)-helix spine of hydrogen bonded peptide groups or the full protein \(\alpha\)-helix comprised of three parallel \(\alpha\)-helix spines. The simulated stochastic dynamics revealed that although the thermal noise is detrimental for the single isolated \(\alpha\)-helix spine, the cooperative action of three amide I exciton quanta in the full protein \(\alpha\)-helix ensures soliton lifetime of over 30 ps, during which the amide I energy could be transported along the entire extent of an 18-nm-long \(\alpha\)-helix. Thus, macromolecular protein complexes, which are built up of protein \(\alpha\)-helices could harness soliton-assisted energy transport at physiological temperature. Because the hydrolysis of a single adenosine triphosphate molecule is able to initiate three amide I exciton quanta, it is feasible that multiquantal protein solitons subserve a variety of specialized physiological functions in living systems. Cited in 1 Document MSC: 92D20 Protein sequences, DNA sequences 82C22 Interacting particle systems in time-dependent statistical mechanics 82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics 60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.) Keywords:davydov soliton; Langevin dynamics; protein \(\alpha\)-helix; soliton lifetime; thermal noise × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] McLachlan, A. D., Protein structure and function, Annu Rev Phys Chem, 23, 1, 165-192 (1972) [2] Ouzounis, C. A.; Coulson, R. M.R.; Enright, A. J.; Kunin, V.; Pereira-Leal, J. B., Classification schemes for protein structure and function, Nat Rev Genet, 4, 7, 508-519 (2003) [3] Rodwell, V. W.; Bender, D.; Botham, K. M.; Kennelly, P. J.; Weil, P. A., Harper’s illustrated biochemistry, 31st Edition (2018), McGraw-Hill Education: McGraw-Hill Education New York [4] Barclay, C. J.; Loiselle, D. S., An equivocal final link – quantitative determination of the thermodynamic efficiency of ATP hydrolysis – sullies the chain of electric, ionic, mechanical and metabolic steps underlying cardiac contraction, Front Physiol, 11, 183 (2020) [5] Kammermeier, H.; Schmidt, P.; Jüngling, E., Free energy change of ATP-hydrolysis: a causal factor of early hypoxic failure of the myocardium?, J Mol Cell Cardiol, 14, 5, 267-277 (1982) [6] Weiss, R. G.; Gerstenblith, G.; Bottomley, P. A., ATP Flux through creatine kinase in the normal, stressed, and failing human heart, Proc Natl Acad Sci USA, 102, 3, 808-813 (2005) [7] Newell, D. B.; Tiesinga, E., The international system of units (SI), NIST special publication 330, national institute of standards and technology, Gaithersburg, Maryland (2019) [8] Berg, J. M.; Tymoczko, J. L.; Stryer, L., Biochemistry, 5th edition, W. H. Freeman and Company, New York (2002) [9] Cooper, G. M., The cell: a molecular approach, 8th Edition (2019), Oxford University Press: Oxford University Press Oxford [10] Pauling, L.; Corey, R. B.; Branson, H. R., The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain, Proc Natl Acad Sci USA, 37, 4, 205-211 (1951) [11] Davydov, A. S.; Kislukha, N. I., Solitons in one-dimensional molecular chains, Phys Status Solidi B, 75, 2, 735-742 (1976) [12] Davydov, A. S., Solitons in molecular systems, Phys Scr, 20, 3-4, 387-394 (1979) · Zbl 1063.81686 [13] Davydov, A. S., The role of solitons in the energy and electron transfer in one-dimensional molecular systems, Physica D, 3, 1-2, 1-22 (1981) [14] Scott, A. C., Davydov’s soliton, Phys Rep, 217, 1, 1-67 (1992) [15] Luo, J.; Piette, B. M.A. G., A generalised Davydov-Scott model for polarons in linear peptide chains, Eur Phys J B, 90, 8, 155 (2017) [16] Georgiev, D. D.; Glazebrook, J. F., On the quantum dynamics of Davydov solitons in protein \(\alpha \)-helices, Physica A, 517, 257-269 (2019) · Zbl 1514.92075 [17] Georgiev, D. D.; Glazebrook, J. F., Quantum tunneling of Davydov solitons through massive barriers, Chaos Solitons Fractals, 123, 275-293 (2019) [18] Georgiev, D. D.; Glazebrook, J. F., Quantum transport and utilization of free energy in protein \(\alpha \)-helices, Adv Quantum Chem, 82, 253-300 (2020) [19] Georgiev, D. D.; Glazebrook, J. F., Launching of Davydov solitons in protein \(\alpha \)-helix spines, Physica E, 124, 114332 (2020) [20] Scott, A. C., Dynamics of Davydov solitons, Phys Rev A, 26, 1, 578-595 (1982) [21] Cruzeiro, L.; Halding, J.; Christiansen, P. L.; Skovgaard, O.; Scott, A. C., Temperature effects on the Davydov soliton, Phys Rev A, 37, 3, 880-887 (1988) [22] Zolotaryuk, A. V., Many-particle Davydov solitons, Physics of Many Particle Systems, 13, 40-52 (1988) [23] Kerr, W. C.; Lomdahl, P. S., Quantum-mechanical derivation of the Davydov equations for multi-quanta states, (Christiansen, P. L.; Scott, A. C., Davydov’s Soliton Revisited: Self-Trapping of Vibrational Energy in Protein (1990), Springer: Springer New York), 23-30 [24] Kerr, W. C.; Lomdahl, P. S., Quantum-mechanical derivation of the equations of motion for Davydov solitons, Phys Rev B, 35, 7, 3629-3632 (1987) [25] Kubo, R., The fluctuation-dissipation theorem, Rep Prog Phys, 29, 1, 255-284 (1966) · Zbl 0163.23102 [26] Halding, J.; Lomdahl, P. S., Coherent excitations of a 1-dimensional molecular lattice with mass variation, Phys Lett A, 124, 1, 37-41 (1987) [27] Lomdahl, P. S.; Kerr, W. C., Davydov solitons at 300 Kelvin: the final search, (Christiansen, P. L.; Scott, A. C., Davydov’s Soliton Revisited: Self-Trapping of Vibrational Energy in Protein (1990), Springer: Springer New York), 259-265 [28] Förner, W., Davydov soliton dynamics: temperature effects, J Phys Condens Matter, 3, 24, 4333-4348 (1991) [29] Ikeda, N.; Watanabe, S.; Fukushima, M.; Kunita, H., Itô’s stochastic calculus and probability theory (1996), Springer: Springer Tokyo · Zbl 0852.00016 [30] Accardi, L.; Boukas, A., Itô calculus and quantum white noise calculus, Stochastic Analysis and Applications, 7-51 (2007), Springer: Springer Berlin · Zbl 1201.81079 [31] Schilling, R. L.; Partzsch, L.; Böttcher, B., Brownian motion: an introduction to stochastic processes (2012), Walter de Gruyter: Walter de Gruyter Berlin · Zbl 1258.60002 [32] Itô, K., Stochastic differentials, Appl Math Optim, 1, 4, 374-381 (1975) · Zbl 0325.60057 [33] https://gallica.bnf.fr/ark:/12148/bpt6k3100t/f3.item · JFM 39.0847.03 [34] Ford, G. W.; Kac, M., On the quantum langevin equation, J Stat Phys, 46, 5, 803-810 (1987) · Zbl 0682.60069 [35] Araújo, R.; Wald, S.; Henkel, M., Axiomatic construction of quantum Langevin equations, J Stat Mech: Theory Exp, 2019, 5, 053101 (2019) [36] de Oliveira, M. J., Quantum Langevin equation, J Stat Mech: Theory Exp, 2020, 2, 023106 (2020) · Zbl 1456.60217 [37] Brizhik, L. S.; Davydov, A. S., Soliton excitations in one-dimensional molecular systems, Phys Status Solidi B, 115, 2, 615-630 (1983) [38] Brizhik, L. S., Soliton generation in molecular chains, Phys Rev B, 48, 5, 3142-3144 (1993) [39] Lomdahl, P. S.; Kerr, W. C., Do Davydov solitons exist at 300 k?, Phys Rev Lett, 55, 11, 1235-1238 (1985) [40] Förner, W.; Ladik, J., Influence of heat bath and disorder on Davydov solitons, (Christiansen, P. L.; Scott, A. C., Davydov’s Soliton Revisited: Self-Trapping of Vibrational Energy in Protein (1990), Springer: Springer New York), 267-283 [41] Förner, W., Davydov soliton dynamics: two-quantum states and diagonal disorder, J Phys Condens Matter, 3, 19, 3235 (1991) [42] Förner, W., Quantum and disorder effects in Davydov soliton theory, Phys Rev A, 44, 4, 2694-2708 (1991) [43] Xie, A.; van der Meer, L.; Hoff, W.; Austin, R. H., Long-lived amide I vibrational modes in myoglobin, Phys Rev Lett, 84, 23, 5435-5438 (2000) [44] Phillips, S. E.V., Structure and refinement of oxymyoglobin at 1.6 å resolution, J Mol Biol, 142, 4, 531-554 (1980) [45] Georgiev, D. D.; Kolev, S. K.; Cohen, E.; Glazebrook, J. F., Computational capacity of pyramidal neurons in the cerebral cortex, Brain Res, 1748, 147069 (2020) [46] Kariev, A. M.; Green, M. E., Quantum calculations on ion channels: why are they more useful than classical calculations, and for which processes are they essential?, Symmetry (Basel), 13, 4, 655 (2021) [47] Davydov, A. S., Solitons in quasi-one-dimensional molecular structures, Soviet Physics Uspekhi, 25, 12, 898-918 (1982) [48] Brizhik, L. S.; Luo, J.; Piette, B. M.A. G.; Zakrzewski, W. J., Long-range donor-acceptor electron transport mediated by alpha-helices, Phys Rev E, 100, 6, 062205 (2019) [49] Cruzeiro-Hansson, L., Dynamics of a mixed quantum-classical system at finite temperature, Europhys Lett, 33, 9, 655-660 (1996) [50] Cruzeiro-Hansson, L., The Davydov Hamiltonian leads to stochastic energy transfer in proteins, Phys Lett A, 223, 5, 383-388 (1996) [51] Cruzeiro-Hansson, L.; Takeno, S., Davydov model: the quantum, mixed quantum-classical, and full classical systems, Physical Review E, 56, 1, 894-906 (1997) [52] Glauber, R. J., The quantum theory of optical coherence, Physical Review, 130, 6, 2529-2539 (1963) [53] Glauber, R. J., Coherent and incoherent states of the radiation field, Physical Review, 131, 6, 2766-2788 (1963) · Zbl 1371.81166 [54] Hoel, H.; Szepessy, A., Classical Langevin dynamics derived from quantum mechanics, Discrete & Continuous Dynamical Systems Series B, 25, 10, 4001-4038 (2020) · Zbl 1453.82064 [55] Savin, A. V.; Zolotaryuk, A. V., Dynamics of the amide-I excitation in a molecular chain with thermalized acoustic and optical modes, Physica D, 68, 1, 59-64 (1993) [56] Brizhik, L. S.; Gaididei, Y. B.; Vakhnenko, A. A.; Vakhnenko, V. A., Soliton generation in semi-infinite molecular chains, Phys Status Solidi B, 146, 2, 605-612 (1988) [57] Malomed, B. A., Nonlinearity and discreteness: solitons in lattices, (Kevrekidis, P. G.; Cuevas-Maraver, J.; Saxena, A., Emerging Frontiers in Nonlinear Science (2020), Springer: Springer Cham, Switzerland), 81-110 [58] Vakhnenko, O. O., Nonlinear integrable dynamics of coupled vibrational and intra-site excitations on a regular one-dimensional lattice, Phys Lett A, 405, 127431 (2021) · Zbl 07411258 [59] Luo, J., Exact analytical solution of a novel modified nonlinear Schrödinger equation: solitary quantum waves on a lattice, Stud Appl Math, 146, 2, 550-562 (2021) · Zbl 1466.81013 [60] Kivshar, Y. S.; Malomed, B. A., Dynamics of solitons in nearly integrable systems, Rev Mod Phys, 61, 4, 763-915 (1989) [61] Brizhik, L. S.; Eremko, A. A.; Piette, B.; Zakrzewski, W. J.M., Solitons in \(\alpha \)-helical proteins, Phys Rev E, 70, 3, 031914 (2004) [62] Cruzeiro-Hansson, L.; Christiansen, P. L.; Scott, A. C., Thermal stability of the Davydov soliton, (Christiansen, P. L.; Scott, A. C., Davydov’s Soliton Revisited: Self-Trapping of Vibrational Energy in Protein (1990), Springer: Springer New York), 325-335 [63] Brizhik, L.; Eremko, A.; Piette, B.; Zakrzewski, W., Charge and energy transfer by solitons in low-dimensional nanosystems with helical structure, Chem Phys, 324, 1, 259-266 (2006) [64] Krokhotin, A.; Niemi, A. J.; Peng, X., Soliton concepts and protein structure, Phys Rev E, 85, 3, 031906 (2012) [65] Peng, X.-B.; Liu, J.-J.; Dai, J.; Niemi, A. J.; He, J. F., Application of topological soliton in modeling protein folding: recent progress and perspective, Chin Phys B, 20, 10, 108705 (2020) [66] Wu, F.; Zhang, E. Y.; Zhang, J.; Bache, R. J.; Beard, D. A., Phosphate metabolite concentrations and ATP hydrolysis potential in normal and ischaemic hearts, J Physiol, 586, 17, 4193-4208 (2008) [67] Barrozo, A.; Blaha-Nelson, D.; Williams, N. H.; Kamerlin, S. C.L., The effect of magnesium ions on triphosphate hydrolysis, Pure Appl Chem, 89, 6, 715-727 (2017) [68] Davydov, A. S., Quantum theory of the motion of a quasi-particle in a molecular chain with thermal vibrations taken into account, Phys Status Solidi B, 138, 2, 559-576 (1986) [69] Davydov, A. S., The lifetime of molecular (Davydov) solitons, J Biol Phys, 18, 2, 111-125 (1991) [70] Zolotaryuk, A. V.; Spatschek, K. H.; Savin, A. V., Bifurcation scenario of the Davydov-Scott self-trapping mode, Europhys Lett, 31, 9, 531-536 (1995) [71] Cederbaum, L. S.; Streltsov, A. I., Best mean-field for condensates, Phys Lett A, 318, 6, 564-569 (2003) · Zbl 1098.82572 [72] Romanovsky, I.; Yannouleas, C.; Landman, U., Crystalline boson phases in harmonic traps: beyond the Gross-Pitaevskii mean field, Phys Rev Lett, 93, 23, 230405 (2004) [73] Romanovsky, I.; Yannouleas, C.; Baksmaty, L. O.; Landman, U., Bosonic molecules in rotating traps, Phys Rev Lett, 97, 9, 090401 (2006) [74] Heimsoth, M.; Bonitz, M., Interacting bosons beyond the Gross-Pitaevskii mean field, Physica E, 42, 3, 420-424 (2010) [75] Pitaevskii, L.; Stringari, S., Bose-Einstein condensation (2003), Oxford University Press: Oxford University Press Oxford · Zbl 1110.82002 [76] Sakaguchi, H.; Malomed, B. A., Matter-wave solitons in nonlinear optical lattices, Phys Rev E, 72, 4, 046610 (2005) [77] Lai, Y.; Haus, H. A., Quantum theory of solitons in optical fibers. i. time-dependent hartree approximation, Phys Rev A, 40, 2, 844-853 (1989) [78] Scott, A. C.; Eilbeck, J. C.; Gilhøj, H., Quantum lattice solitons, Physica D, 78, 3, 194-213 (1994) · Zbl 0826.35106 [79] Alon, O. E.; Streltsov, A. I.; Cederbaum, L. S., Time-dependent multi-orbital mean-field for fragmented Bose-Einstein condensates, Phys Lett A, 362, 5, 453-459 (2007) [80] Lode, A. U.J.; Lévêque, C.; Madsen, L. B.; Streltsov, A. I.; Alon, O. E., Multiconfigurational time-dependent Hartree approaches for indistinguishable particles, Rev Mod Phys, 92, 1, 011001 (2020) [81] Cederbaum, L. S.; Streltsov, A. I., Self-consistent fragmented excited states of trapped condensates, Phys Rev A, 70, 2, 023610 (2004) [82] Alon, O. E.; Streltsov, A. I.; Cederbaum, L. S., Fragmentation of Bose-Einstein condensates in multi-well three-dimensional traps, Phys Lett A, 347, 1, 88-94 (2005) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.