×

Classification of special reductive groups. (English) Zbl 07599281

Summary: We give a classification of special reductive groups over arbitrary fields that improves a theorem of M. Huruguen.

MSC:

20G15 Linear algebraic groups over arbitrary fields
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] J.-L. Colliot-Thélène, Sansuc, and J.-J. La, R-équivalence sur les tores, Ann. Sci. Éc. Norm. Supér. (4) 10 (1977), no. 2, 175-229. · Zbl 0356.14007
[2] P. K. Draxl, Skew fields, London Math. Soc. Lecture Note Ser., 81, Cambridge University Press, Cambridge, 1983. · Zbl 0498.16015
[3] A. Grothendieck, Torsion homologique et sections rationnelles, Séminaire C. Chevalley; 2e année: 1958. Anneaux de Chow et applications, pp. 1-29, Secrétariat mathématique, 11 rue Pierre Curie, Paris, 1958. · Zbl 0098.13101
[4] M. Huruguen, Special reductive groups over an arbitrary field, Transform. Groups 21 (2016), no. 4, 1079-1104. · Zbl 1394.20025
[5] M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The book of involutions, Am. Math. Soc., Providence, 1998, With a preface in French by J. Tits. · Zbl 0955.16001
[6] A. S. Merkurjev, R. Parimala, and J.-P. Tignol, Invariants of quasitrivial tori and the Rost invariant, Algebra i Analiz 14 (2002), no. 5, 110-151. · Zbl 1041.11023
[7] D. Quillen, Higher algebraic K-theory. I, Algebraic \(K\)-theory, I: higher \(K\)-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Lecture Notes in Math., 341, pp. 85-147, 1973. · Zbl 0292.18004
[8] V. E. Voskresenskiĭ, Algebraic groups and their birational invariants, Transl. Math. Monogr., 179, Am. Math. Soc., Providence, 1998, Translated from the Russian manuscript by Boris Kunyavski [Boris È. Kunyavskiĭ]. · Zbl 0974.14034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.