×

zbMATH — the first resource for mathematics

Gaussian periods and units in certain cyclic fields. (English) Zbl 0760.11032
The property of period-unit integer translation is analysed in simplest quadratic, cubic and quartic fields of arbitrary conductor. The paper extends the work of E. Lehmer, R. Schoof and L. C. Washington.

MSC:
11R27 Units and factorization
11R16 Cubic and quartic extensions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Paul Bachmann, Die Lehre von der Kreisteilung, Verlag and Druck von B. G. Teubner, Leipzig and Berlin, 1927. · JFM 53.0124.01
[2] Albert Châtelet, Arithmétique des corps abéliens du troisième degré, Ann. Sci. École Norm. Sup. (3) 63 (1946), 109 – 160 (1947) (French). · Zbl 0061.06003
[3] Carl Friedrich Gauss, Theoria residuorum biquadraticorum: commentatio prima, Werke, Königlichen Gesellschaft der Wissenschaften, Göttingen, 1876, pp. 65-92; originally published 1825.
[4] Marie-Nicole Gras, Table numérique du nombre de classes et des unités des extensions cycliques de degré 4 de \( \mathbb{Q}\), Publ. Math. Fac. Sci. Besançon, 1977/1978. · Zbl 0359.12007
[5] Kenneth Hardy, R. H. Hudson, D. Richman, Kenneth S. Williams, and N. M. Holtz, Calculation of the class numbers of imaginary cyclic quartic fields, Math. Comp. 49 (1987), no. 180, 615 – 620. · Zbl 0624.12004
[6] Helmut Hasse, Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkörpern, Math. Abhand., Walter deGruyter, Berlin, 1975, pp. 285-379; originally published 1950. · Zbl 0035.30502
[7] Kenneth F. Ireland and Michael I. Rosen, A classical introduction to modern number theory, Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York-Berlin, 1982. Revised edition of Elements of number theory. · Zbl 0482.10001
[8] Andrew J. Lazarus, Class numbers of simplest quartic fields, Number theory (Banff, AB, 1988) de Gruyter, Berlin, 1990, pp. 313 – 323. · Zbl 0712.11061
[9] Andrew J. Lazarus, On the class number and unit index of simplest quartic fields, Nagoya Math. J. 121 (1991), 1 – 13. · Zbl 0719.11073
[10] Emma Lehmer, Connection between Gaussian periods and cyclic units, Math. Comp. 50 (1988), no. 182, 535 – 541. , https://doi.org/10.1090/S0025-5718-1988-0929551-0 René Schoof and Lawrence C. Washington, Quintic polynomials and real cyclotomic fields with large class numbers, Math. Comp. 50 (1988), no. 182, 543 – 556. · Zbl 0649.12007
[11] Toru Nakahara, On cyclic biquadratic fields related to a problem of Hasse, Monatsh. Math. 94 (1982), no. 2, 125 – 132. · Zbl 0482.12001
[12] Emma Lehmer, Connection between Gaussian periods and cyclic units, Math. Comp. 50 (1988), no. 182, 535 – 541. , https://doi.org/10.1090/S0025-5718-1988-0929551-0 René Schoof and Lawrence C. Washington, Quintic polynomials and real cyclotomic fields with large class numbers, Math. Comp. 50 (1988), no. 182, 543 – 556. · Zbl 0649.12007
[13] Daniel Shanks, The simplest cubic fields, Math. Comp. 28 (1974), 1137 – 1152. · Zbl 0307.12005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.