Todino, Anna Paola Limiting behavior for the excursion area of band-limited spherical random fields. (English) Zbl 1522.60047 Electron. Commun. Probab. 27, 1-12 (2022). Summary: In this paper we investigate some geometric functionals for band-limited Gaussian and isotropic spherical random fields in dimension 2. In particular, we focus on the area of excursion sets, providing its behavior in the high energy limit. Our results are based on Wiener chaos expansion for non linear transform of Gaussian fields and on an explicit derivation on the high-frequency limit of the covariance function of the field. As a simple corollary we establish also the Central Limit Theorem for the excursion area. Cited in 1 Document MSC: 60G60 Random fields 33C55 Spherical harmonics 42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.) 60F05 Central limit and other weak theorems Keywords:central limit theorem; excursion area; Gaussian eigenfunctions; Hilb’s asymptotics; Wiener-chaos expansion × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Atkinson K. and Han W., Spherical harmonics and approximations on the unit sphere: An introduction, Lecture Notes in Mathematics, vol. 2044 (2012). · Zbl 1254.41015 [2] Beliaev D. and Wigman I., Volume distribution of nodal domains of random band-limited functions, Probab. Theory Related Fields 172 (2018), no. 1-2, 453-492. · Zbl 1404.60023 [3] Cammarota V. and Marinucci D., A quantitative central limit theorem for the Euler-Poincaré characteristic of random spherical eigenfunctions, Ann. Probab. 46 (2018), no. 6, 3188-3228. · Zbl 1428.60067 [4] Cammarota V., Marinucci D., and Wigman I., Fluctuations of the Euler-Poincaré characteristic for random spherical harmonics, Proc. Amer. Math. Soc. 144 (2016), no. 11, 4759-4775. · Zbl 1351.60061 [5] Feng R., Xu X., and Adler R. J., Critical radius and supremum of random spherical harmonics (II), Electron. Commun. Probab. 23 (2018), Paper No. 50, 11. · Zbl 1401.60057 [6] Marinucci D. and Peccati G., Random fields on the sphere: representation, limit theorems and cosmological applications, London Mathematical Society Lecture Note Series, vol. 389, Cambridge University Press, 2011. · Zbl 1260.60004 [7] Marinucci D. and Rossi M., Stein-Malliavin approximations for nonlinear functionals of random eigenfunctions on \[{\mathbb{S}^d} \], J. Funct. Anal. 268 (2015), no. 8, 2379-2420. · Zbl 1333.60033 [8] Marinucci D., Rossi M., and Wigman I., The asymptotic equivalence of the sample trispectrum and the nodal length for random spherical harmonics, Ann. Inst. Henri Poincaré Probab. Stat. 56 (2020), no. 1, 374-390. · Zbl 1465.60044 [9] Marinucci D. and Wigman I., On nonlinear functionals of random spherical eigenfunctions, Comm. Math. Phys. 327 (2014), no. 3, 849-872. · Zbl 1322.60030 [10] Marinucci D. and Wigman I., On the area of excursion sets of spherical Gaussian eigenfunctions, J. Math. Phys. 52 (2011), no. 9, 093301, 21. · Zbl 1272.82017 [11] Marinucci D. and Wigman I., The defect variance of random spherical harmonics, Journal of Physics A: Mathematical and Theoretical 44 (2011), 355206. · Zbl 1232.60039 [12] Nazarov F. and Sodin M., Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions, Zh. Mat. Fiz. Anal. Geom. 12 (2016), no. 3, 205-278. · Zbl 1358.60057 [13] Nazarov F. and Sodin M., On the number of nodal domains of random spherical harmonics, Amer. J. Math. 131 (2009), no. 5, 1337-1357. · Zbl 1186.60022 [14] Nourdin I. and Peccati G., Normal approximations with Malliavin calculus. From Stein’s method to universality, Cambridge Tracts in Mathematics, vol. 192, Cambridge University Press, Cambridge, 2012. · Zbl 1266.60001 [15] Rossi M., The defect of random hyperspherical harmonics, J. Theoret. Probab. 32 (2019), no. 4, 2135-2165. · Zbl 1480.60139 [16] Sarnak P. and Wigman I., Topologies of nodal sets of random band-limited functions, Comm. Pure Appl. Math. 72 (2019), no. 2, 275-342. · Zbl 1414.58019 [17] Szegő G., Orthogonal polynomials, fourth ed., American Mathematical Society Colloquium Publications, vol. XXIII, American Mathematical Society, Providence, R.I., 1975. · Zbl 0305.42011 [18] Todino A. P., A quantitative central limit theorem for the excursion area of random spherical harmonics over subdomains of \[{\mathbb{S}^2} \], J. Math. Phys. 60 (2019), no. 2, 023505, 33. · Zbl 1481.60061 [19] Todino A. P., Nodal lengths in shrinking domains for random eigenfunctions on \[{S^2} \], Bernoulli 26 (2020), no. 4, 3081-3110. · Zbl 1507.60069 [20] Wigman I., Fluctuations of the nodal length of random spherical harmonics, Comm. Math. Phys. 298 (2010), no. 3, 787-831. · Zbl 1213.33019 [21] Wigman I., On the distribution of the nodal sets of random spherical harmonics, J. Math. Phys. 50 (2009), no. 1, 013521, 44. · Zbl 1200.58021 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.