×

zbMATH — the first resource for mathematics

Global solution to the viscous compressible barotropic multipolar gas. (English) Zbl 0761.76006
Summary: The global existence of strong solutions of the initial-boundary value problem in bounded domains to the system of partial differential equations for viscous compressible polytropic multipolar fluids is proved. Some other properties such as uniqueness and cavitation are discussed.

MSC:
76A05 Non-Newtonian fluids
35Q35 PDEs in connection with fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H. Bellout, F. Bloom, J. Nečas: Phenomenological behaviour of multipolar fluids (to appear). · Zbl 0791.76002
[2] J.L. Bleustein, A.E. Green: Dipolar fluids, Internat. J. Engrg. Sci., 5 (1967). · Zbl 0145.46305
[3] A. Kufner, O. John, S. Fučík: Functional Spaces, Academia, Prague 1977.
[4] J.L. Lions: Quelques méthodes de résolution des problemes aux limites non linéaires, Dunod, Paris, 1969.
[5] A. Matsumura, T. Nishida: The initial value problem for the equations of motion of viscous and heat conductive gases, J. Math. Kyoto Univ., 20 (1980), 67. · Zbl 0429.76040
[6] J. Nečas: Les méthodes directes en la théorie des equations elliptiques, Academia, Prague, 1967
[7] J. Nečas, A. Novotný: Some qualitative properties of viscous compressible multipolar heat conductive fluid, Comm. Partial Differential Equations, 16(2&3) (1991), 197 · Zbl 0777.35061
[8] J. Nečas, A. Novotný, M. Šilhavý: Global solution to the compressible isothermal multipolar fluid, J. Math. Anal. Appl., 162(1) (1991).
[9] J. Nečas, M. Šilhavý: Viscous multipolar fluids, Quart. Appl. Math., 49 (1991), 247
[10] J. Neustupa: Global weak solvability of a regularized system of the Navier-Stokes equation for compressible fluid, Apl. Mat., 33 (1988), 389. · Zbl 0668.76074
[11] J. Neustupa, A. Novotný: Global weak solvability to the regularized viscous compressible multipolar flow, Appl. Math., 36(6) (1992).
[12] A. Novotný: Compressible multipolar fluids–physical background and mathematical theory, Progr. Phys. (1992), in press.
[13] M. Padula: Existence of global solutions for 2-dimensional viscous compresible flow, J. Funct. Anal., 69 (1986), 1. · Zbl 0633.76072
[14] M. Padula: Erratum. J. Funct. Anal., 76 (1988), 231, 77 (1988), 232. · Zbl 0641.76015
[15] A. Valli: An existence theorem for compressible viscous fluids, Ann. Mat. Pura Appl., 130 (1982), 197. · Zbl 0599.76081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.