Bernstein collocation method for solving MHD Jeffery-Hamel blood flow problem with error estimations. (English) Zbl 07610791


65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Wxx Magnetohydrodynamics and electrohydrodynamics
65Dxx Numerical approximation and computational geometry (primarily algorithms)
Full Text: DOI


[1] Jeffery, G. B., L The two-dimensional steady motion of a viscous fluid, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 29, 172, 455-465 (1915) · JFM 45.1088.01 · doi:10.1080/14786440408635327
[2] Marinca, V.; Herişanu, N., An optimal homotopy asymptotic approach applied to nonlinear MHD Jeffery-Hamel flow, Mathematical Problems in Engineering, 2011 (2011) · Zbl 1235.76110 · doi:10.1155/2011/169056
[3] Khan, U.; Sikandar, W.; Ahmed, N.; Din, S. T. M.; Ahmed, N., Effects of velocity slip on MHD flow of a non-Newtonian fluid in converging and diverging channels, International Journal of Algorithms, Computing and Mathematics, 2, 4, 469-483 (2016) · Zbl 1421.76269 · doi:10.1007/s40819-015-0071-5
[4] Jamil, D. F.; Saleem, S.; Roslan, R.; Mubaddel, F. S. A.; Gorji, M. R.; Issakhov, A.; Din, S. U., Analysis of non-Newtonian magnetic Casson blood flow in an inclined stenosed artery using Caputo-Fabrizio fractional derivatives, Computer Methods and Programs in Biomedicine, 203 (2021) · doi:10.1016/j.cmpb.2021.106044
[5] Nazeer, M.; Saleem, S.; Hussain, F.; Iftikhar, S.; Qahtani, A. A., Mathematical modeling of bio-magnetic fluid bounded by ciliated walls of wavy channel incorporated with viscous dissipation: discarding mucus from lungs and blood streams, International Communications in Heat and Mass Transfer, 124 (2021) · doi:10.1016/j.icheatmasstransfer.2021.105274
[6] Qasim, M.; Afridi, M. I.; Wakif, A.; Saleem, S., Influence of variable transport properties on nonlinear radioactive Jeffrey fluid flow over a disk: utilization of generalized differential quadrature method, Arabian Journal for Science and Engineering, 44, 6 (2019)
[7] Hamrelaine, S.; Oudina, F. M.; Rafik, M., Analysis of MHD Jeffery-Hamel flow with suction/injection by homotopy analysis method, J. Adv. Res. Fluid Mech. Therm. Sci., 58, 173-186 (2019)
[8] Ara, A.; Khan, N. A.; Naz, F.; Raja, M. A. Z.; Rubbab, Q., Numerical simulation for Jeffery-Hamel flow and heat transfer of micropolar fluid based on differential evolution algorithm, AIP Advances, 8, 1 (2018) · doi:10.1063/1.5011727
[9] Mahmood, A.; Basir, M. F. M.; Ali, U.; Kasihmuddin, M. S. M.; Mansor, M. A., Numerical solutions of heat transfer for magnetohydrodynamic Jeffery-Hamel flow using spectral homotopy analysis method, Processes, 7, 9 (2019) · doi:10.3390/pr7090626
[10] Adel, W.; Biçer, K. E.; Sezer, M., A novel numerical approach for simulating the nonlinear MHD Jeffery-Hamel flow problem, International Journal of Algorithms, Computing and Mathematics, 7, 3, 74-15 (2021) · Zbl 1499.76137 · doi:10.1007/s40819-021-01016-3
[11] Coluccio, L.; Eisinberg, A.; Fedele, G., Gauss-Lobatto to Bernstein polynomials transformation, Journal of Computational and Applied Mathematics, 222, 2, 690-700 (2008) · Zbl 1157.65013 · doi:10.1016/j.cam.2007.12.007
[12] Lorentz, G. G., Bernstein Polynomials (2013), Providence, RI, USA: American Mathematical Soc, Providence, RI, USA
[13] Jafarian, A.; Nia, S. A. M.; Golmankhaneh, A. K.; Baleanu, D., Numerical solution of linear integral equations system using the Bernstein collocation method, Advances in Difference Equations, 2013, 1 (2013) · Zbl 1444.65077 · doi:10.1186/1687-1847-2013-123
[14] Hammad, D. A., Application of Bernstein collocation method for solving the generalized regularized long wave equations, Ain Shams Engineering Journal, 12, 4, 4081-4089 (2021) · doi:10.1016/j.asej.2021.04.005
[15] Ali, I., Bernstein collocation method for neutral type functional differential equation, Mathematical Biosciences and Engineering, 18, 3, 2764-2774 (2021) · Zbl 1523.65064 · doi:10.3934/mbe.2021140
[16] Mohammad, S. H.; Rawi, E. S. A., Solving fractional coupled EW and coupled MEW equations using Bernstein collocation method, Journal of Physics: Conference Series, 1804 (2021) · doi:10.1088/1742-6596/1804/1/012021
[17] Bataineh, A. S.; Isik, O. R.; Oqielat, M. A. N.; Hashim, I., An enhanced adaptive Bernstein collocation method for solving systems of ODEs, Mathematics, 9, 4, 425 (2021) · doi:10.3390/math9040425
[18] Shahni, J.; Singh, R., Numerical solution of system of Emden-Fowler type equations by Bernstein collocation method, Journal of Mathematical Chemistry, 59, 4, 1117-1138 (2021) · Zbl 1471.65090 · doi:10.1007/s10910-021-01235-5
[19] Shahni, J.; Singh, R., An efficient numerical technique for Lane-Emden-Fowler boundary value problems: Bernstein collocation method, The European Physical Journal Plus, 135, 6 (2020) · doi:10.1140/epjp/s13360-020-00489-3
[20] Shahni, J.; Singh, R., Numerical results of Emden-Fowler boundary value problems with derivative dependence using the Bernstein collocation method, Engineering with Computers, 38, 371-380 (2022) · doi:10.1007/s00366-020-01155-z
[21] Ahmad, I.; Ilyas, H., Homotopy perturbation method for the nonlinear MHD Jeffery-Hamel blood flows problem, Applied Numerical Mathematics, 141, 124-132 (2019) · Zbl 1418.92031 · doi:10.1016/j.apnum.2018.07.005
[22] Schlichting, H.; Gersten, K., Boundary-layer Theory (2000), New York, NY, USA: McGraw-Hill, New York, NY, USA · Zbl 0940.76003
[23] Bhatti, M. I.; Bracken, P., Solutions of differential equations in a Bernstein polynomial basis, Journal of Computational and Applied Mathematics, 205, 1, 272-280 (2007) · Zbl 1118.65087 · doi:10.1016/j.cam.2006.05.002
[24] Dascioglu, A.; Isler, N., Bernstein collocation method for solving nonlinear differential equations, Mathematical and Computational Applications, 18, 3, 293-300 (2013) · Zbl 1396.65123 · doi:10.3390/mca18030293
[25] Bataineh, A. S.; Isik, O. R.; Hashim, I., Bernstein method for the MHD flow and heat transfer of a second grade fluid in a channel with porous wall, Alexandria Engineering Journal, 55, 3, 2149-2156 (2016) · doi:10.1016/j.aej.2016.06.022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.