Bastl, Bohumír; Brandner, Marek; Slabá, Kristýna; Turnerová, Eva Consistent streamline residual-based artificial viscosity stabilization for numerical simulation of incompressible turbulent flow by isogeometric analysis. (English) Zbl 07613024 Appl. Math., Praha 67, No. 6, 805-829 (2022). Summary: In this paper, we propose a new stabilization technique for numerical simulation of incompressible turbulent flow by solving Reynolds-averaged Navier-Stokes equations closed by the SST \(k\)-\(\omega\) turbulence model. The stabilization scheme is constructed such that it is consistent in the sense used in the finite element method, artificial diffusion is added only in the direction of convection and it is based on a purely nonlinear approach. We present numerical results obtained by our in-house incompressible fluid flow solver based on isogeometric analysis (IgA) for the benchmark problem of a wall bounded turbulent fluid flow simulation over a backward-facing step. Pressure coefficient and reattachment length are compared to experimental data acquired by Driver and Seegmiller, to the computational results obtained by open source software OpenFOAM and to the NASA numerical results. MSC: 35Q35 PDEs in connection with fluid mechanics 65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs 65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs Keywords:isogeometric analysis; turbulence modeling; spurious oscillations; stabilization techniques; B-splines; backward-facing step PDF BibTeX XML Cite \textit{B. Bastl} et al., Appl. Math., Praha 67, No. 6, 805--829 (2022; Zbl 07613024) Full Text: DOI References: [1] Barrenechea, G. R.; John, V.; Knobloch, P., A local projection stabilization finite element method with nonlinear crosswind diffusion for convection-diffusion-reaction equations, ESAIM, Math. Model. Numer. Anal., 47, 1335-1366 (2013) · Zbl 1303.65082 [2] Bastl, B.; Brandner, M.; Egermaier, J.; Horníková, H.; Michálková, K.; Turnerová, E., Numerical simulation of lid-driven cavity flow by isogeometric analysis, Acta Polytech., Pr. ČVUT Praha, 61, 33-48 (2021) · Zbl 1463.76026 [3] Bastl, B.; Brandner, M.; Egermaier, J.; Michálková, K.; Turnerová, E., IgA-Based Solver for turbulence modelling on multipatch geometries, Adv. Eng. Softw., 113, 7-18 (2017) · Zbl 1482.76077 [4] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Hughes, T. J R.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Eng., 197, 173-201 (2007) · Zbl 1169.76352 [5] Bazilevs, Y.; Calo, V. M.; Tezduyar, T. E.; Hughes, T. J R., YZβ discontinuity capturing for advection-dominated processes with application to arterial drug delivery, Int. J. Numer. Methods Fluids, 54, 593-608 (2007) · Zbl 1207.76049 [6] Bressan, A.; Sangalli, G., Isogeometric discretizations of the Stokes problem: Stability analysis by the macroelement technique, IMA J. Numer. Anal., 33, 629-651 (2013) · Zbl 1328.76025 [7] Brooks, N. A.; Hughes, T. J R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 32, 199-259 (1982) · Zbl 0497.76041 [8] Buffa, A.; Sangalli, G.; Vázquez, R., Isogeometric analysis in electromagnetics: B-splines approximation, Comput. Methods Appl. Mech. Eng., 199, 1143-1152 (2010) · Zbl 1227.78026 [9] Burman, E.; Ern, A., Nonlinear diffusion and discrete maximum principle for stabilized Galerkin approximations of the convection-diffusion-reaction equation, Comput. Methods Appl. Mech. Eng., 191, 3833-3855 (2002) · Zbl 1101.76354 [10] Collier, N.; Pardo, D.; Dalcin, L.; Paszynski, M.; Calo, V. M., The cost of continuity: A study of the performance of isogeometric finite elements using direct solvers, Comput. Methods Appl. Mech. Eng., 213-216, 353-361 (2012) · Zbl 1243.65137 [11] Davidson, P. A., Turbulence: An Introduction for Scientists and Engineers (2004), Oxford: Oxford University Press, Oxford · Zbl 1061.76001 [12] Donea, J.; Huerta, A., Finite Element Methods for Flow Problems (2003), Chichester: John Wiley & Sons, Chichester [13] Driver, D. M.; Seegmiller, H. L., Features of a reattaching turbulent shear layer in divergent channel flow, AIAA J., 23, 163-171 (1985) [14] Elman, H. C.; Silvester, D. J.; Wathen, A. J., Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics (2014), Oxford: Oxford University Press, Oxford · Zbl 1304.76002 [15] Falini, A.; Špeh, J.; Jüttler, B., Planar domain parameterization with THB-splines, Comput. Aided Geom. Des., 35-36, 95-108 (2015) · Zbl 1417.65066 [16] Hiemstra, R. R.; Sangalli, G.; Tani, M.; Calabrò, F.; Hughes, T. J R., Fast formation and assembly of finite element matrices with application to isogeometric linear elasticity, Comput. Methods Appl. Mech. Eng., 355, 234-260 (2019) · Zbl 1441.74244 [17] Hsu, M-C; Bazilevs, Y.; Calo, V. M.; Tezduyar, T. E.; Hughes, T. J R., Improving stability of stabilized and multiscale formulations in flow simulations at small time steps, Comput. Methods Appl. Mech. Eng., 199, 828-840 (2010) · Zbl 1406.76028 [18] Hughes, T. J R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng., 194, 4135-4195 (2005) · Zbl 1151.74419 [19] Hughes, T. J R.; Reali, A.; Sangalli, G., Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS, Comput. Methods Appl. Mech. Eng., 197, 4104-4124 (2008) · Zbl 1194.74114 [20] John, V.; Knobloch, P., On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations, I. A review. Comput. Methods Appl. Mech. Eng., 196, 2197-2215 (2007) · Zbl 1173.76342 [21] John, V.; Knobloch, P., On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations. II. Analysis for P_1 and Q_1 finite elements, Comput. Methods Appl. Mech. Eng., 197, 1997-2014 (2008) · Zbl 1194.76122 [22] John, V.; Schmeyer, E., Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion, Comput. Methods Appl. Mech. Eng., 198, 475-494 (2008) · Zbl 1228.76088 [23] Kim, J-Y; Ghajar, A. J.; Tang, C.; Foutch, G. L., Comparison of near-wall treatment methods for high Reynolds number backward-facing step flow, Int. J. Comput. Fluid Dyn., 19, 493-500 (2005) · Zbl 1184.76682 [24] Kuzmin, D.; Mierka, O.; Turek, S., On the implementation of the k — ε turbulence model in incompressible flow solvers based on a finite element discretization, Int. J. Comput. Sci. Math., 1, 193-206 (2007) · Zbl 1185.76706 [25] Langley Research Center: NASA Turbulence Modeling Resource: 2DBFS: 2D Backward Facing Step. Available at https://turbmodels.larc.nasa.gov/backstep_val.html (2021). [26] Li, R.; Wu, Q.; Zhu, S., Proper orthogonal decomposition with SUPG-stabilized isogeometric analysis for reduced order modelling of unsteady convection-dominated convection-diffusion-reaction problems, J. Comput. Phys., 387, 280-302 (2019) · Zbl 1452.76094 [27] A. Mantzaflaris, B. Jüttler: G+Smo (Geometry plus Simulation Modules) v0.8.1. Available at https://github.com/gismo (2018). [28] Moukalled, F.; Mangani, L.; Darwish, M., The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM and Matlab (2016), Cham: Springer, Cham · Zbl 1329.76001 [29] Nazarov, M., Convergence of a residual based artificial viscosity finite element method, Comput. Math. Appl., 65, 616-626 (2013) · Zbl 1319.65098 [30] Nazarov, M.; Hoffman, J., Residual-based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods, Int. J. Numer. Methods Fluids, 71, 339-357 (2013) · Zbl 1430.76314 [31] Nichols, R. H., Turbulence Models and Their Application to Complex Flows: Revision 4.01 (2014), Birmingham: University of Alabama at Birmingham, Birmingham [32] Nordanger, K.; Holdahl, R.; Kvarving, A. M.; Rasheed, A.; Kvamsdal, T., Implementation and comparison of three isogeometric Navier-Stokes solvers applied to simulation of flow past a fixed 2D NACA0012 airfoil at high Reynolds number, Comput. Methods Appl. Mech. Eng., 284, 664-688 (2015) · Zbl 1425.65118 [33] OpenCFD (ESI Group): OpenFOAM: User Guide v2112: The open source CFD toolbox. Available at https://www.openfoam.com/documentation/guides/latest/doc/index.html (2019). [34] Otoguro, Y.; Takizawa, K.; Tezduyar, T. E., Element length calculation in B-spline meshes for complex geometries, Comput. Mech., 65, 1085-1103 (2020) · Zbl 1462.76148 [35] Piegl, L.; Tiller, W., The NURBS Books (1997), Berlin: Springer, Berlin · Zbl 0868.68106 [36] Roos, H-G; Stynes, M.; Tobiska, L., Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-diffusion-reaction and Flow Problems (2008), Berlin: Springer, Berlin · Zbl 1155.65087 [37] Shakib, F.; Hughes, T. J R., A new finite element formulation for computational fluid dynamics. IX. Fourier analysis of space-time Galerkin/least-squares algorithms, Comput. Methods Appl. Mech. Eng., 87, 35-58 (1991) · Zbl 0760.76051 [38] Tagliabue, A.; Dedè, L.; Quarteroni, A., Isogeometric analysis and error estimates for high order partial differential equations in fluid dynamics, Comput. Fluids, 102, 277-303 (2014) · Zbl 1391.76360 [39] Takizawa, K.; Tezduyar, T. E.; Otoguro, Y., Stabilization and discontinuity-capturing parameters for space-time flow computations with finite element and isogeometric discretizations, Comput. Mech., 62, 1169-1186 (2018) · Zbl 1462.76128 [40] Tezduyar, T. E., Finite element in fluids: Stabilized formulations and moving boundaries and interfaces, Comput. Fluids, 36, 191-206 (2007) · Zbl 1177.76202 [41] Versteeg, H. K.; Malalasekera, W., An Introduction to Computational Fluid Dynamics: The Finite Volume Method (2007), Harlow: Pearson Education, Harlow [42] Wilcox, D. C., Turbulence Modeling for CFD (2006), La Canada: DCW Industries, La Canada [43] Zhang, H.; Craft, T.; Iacovides, H., The formulation of the RANS equations for hypersonic turbulent flows (2019), Orléans: Avestia Publishing, Orléans This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.