Matonoha, Ctirad; Papáček, Štěpán; Lynnyk, Volodymyr On an optimal setting of constant delays for the D-QSSA model reduction method applied to a class of chemical reaction networks. (English) Zbl 07613025 Appl. Math., Praha 67, No. 6, 831-857 (2022). Summary: We develop and test a relatively simple enhancement of the classical model reduction method applied to a class of chemical networks with mass conservation properties. Both the methods, being (i) the standard quasi-steady-state approximation method, and (ii) the novel so-called delayed quasi-steady-state approximation method, firstly proposed by T. Vejchodský [Math. Bohem. 139, No. 4, 577–585 (2014; Zbl 1349.92030)], are extensively presented. Both theoretical and numerical issues related to the setting of delays are discussed. Namely, for one slightly modified variant of an enzyme-substrate reaction network (Michaelis-Menten kinetics), the comparison of the full non-reduced system behavior with respective variants of reduced model is presented and the results discussed. Finally, some future prospects related to further applications of the delayed quasi-steady-state approximation method are proposed. MSC: 92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.) 34A34 Nonlinear ordinary differential equations and systems 65K10 Numerical optimization and variational techniques Keywords:reaction network; model reduction; singular perturbation; quasi-steady-state approximation; D-QSSA method; optimization Citations:Zbl 1349.92030 PDF BibTeX XML Cite \textit{C. Matonoha} et al., Appl. Math., Praha 67, No. 6, 831--857 (2022; Zbl 07613025) Full Text: DOI References: [1] Bohl, E.; Marek, I., Existence and uniqueness results for nonlinear cooperative systems. Linear Operators and Matrices, Operator Theory: Advances and Applications 130, 153-170 (2002), Basel: Birkhäuser, Basel · Zbl 1023.47052 [2] Bohl, E.; Marek, I., Input-output systems in biology and chemistry and a class of mathematical models describing them, Appl. Math., Praha, 50, 219-245 (2005) · Zbl 1099.34006 [3] Briggs, G. E.; Haldane, J. B S., A note on the kinetics of enzyme action, Biochem. J., 19, 338-339 (1925) [4] Duintjer Tebbens, J.; Matonoha, C.; Matthios, A.; Papáček, On parameter estimation in an in vitro compartmental model for drug-induced enzyme production in pharmacotherapy, Appl. Math., Praha, 64, 253-277 (2019) · Zbl 07088739 [5] Eilertsen, J.; Schnell, S., The quasi-steady-state approximations revisited: Timescales, small parameters, singularities, and normal forms in enzyme kinetics, Math. Biosci., 325, 20 (2020) · Zbl 1448.92093 [6] Flach, E. H.; Schnell, S., Use and abuse of the quasi-steady-state approximation, IEE Proc. - Syst. Biol., 153, 187-191 (2006) [7] Härdin, H. M.; Zagaris, A.; Krab, K.; Westerhoff, H. V., Simplified yet highly accurate enzyme kinetics for cases of low substrate concentrations, FEBS J, 276, 5491-5506 (2009) [8] Isidori, A., Nonlinear Control Systems, Communications and Control Engineering Series (1995), Berlin: Springer, Berlin [9] Khalil, H. K., Nonlinear Systems (2002), Upper Saddle River: Prentice Hall, Upper Saddle River · Zbl 1003.34002 [10] Luke, N. S.; De Vito, M. J.; Shah, I.; El-Masri, H. A., Development of a quantitative model of pregnane X receptor (PXR) mediated xenobiotic metabolizing enzyme induction, Bull. Math. Biol., 72, 1799-1819 (2010) · Zbl 1202.92029 [11] Lukšan, L.; Tůma, M.; Matonoha, C.; Vlček, J.; Ramešová, N.; Šiška, M.; Hartman, J., UFO 2017. Interactive System for Universal Functional Optimization, Technical Report V-1252 (2017), Praha: Institute for Computer Science CAS, Praha [12] Marek, I., On a class of stochastic models of cell biology: Periodicity and controllability. Positive Systems, Lecture Notes in Control and Information Sciences, 389, 359-367 (2009) · Zbl 1182.93110 [13] Papáček; Lynnyk, V., Quasi-steady state assumption vs. delayed quasi-steady state assumption: Model reduction tools for biochemical processes, Proceedings of the 23rd International Conference on Process Control, 278-283 (2021), Danvers: IEEE, Danvers [14] Rehák, B., Observer design for a time delay system via the Razumikhin approach, Asian J. Control, 19, 2226-2231 (2017) · Zbl 1386.93057 [15] Rehák, B.; Čelikovský, S.; Ruiz-León, J.; Orozco-Mora, J., A comparison of two FEM-based methods for the solution of the nonlinear output regulation problem, Kybernetika, 45, 427-444 (2009) · Zbl 1165.93320 [16] Schnell, S., Validity of the Michaelis-Menten equation - steady-state or reactant stationary assumption: That is the question, FEBS J., 281, 464-472 (2014) [17] Segel, L. A., On the validity of the steady state assumption of enzyme kinetics, Bull. Math. Biol., 50, 579-593 (1988) · Zbl 0653.92006 [18] Segel, L. A.; Slemrod, M., The quasi-steady-state assumption: A case study in perturbation, SIAM Rev., 31, 446-477 (1989) · Zbl 0679.34066 [19] H. Smith: An Introduction to Delay Differential Equations with Applications to the Life Sciences. Texts in Applied Mathematics 57. Springer, New York, 2011. [20] Snowden, T. J.; van derGraaf, P. H.; Tindall, M. J., Methods of model reduction for large-scale biological systems: A survey of current methods and trends, Bull. Math. Biol., 79, 1449-1486 (2017) · Zbl 1372.92033 [21] Vejchodský, T., Accurate reduction of a model of circadian rhythms by delayed quasisteady state assumptions, Math. Bohem., 139, 577-585 (2014) · Zbl 1349.92030 [22] Vejchodský, T.; Erban, R.; Maini, P. K., Reduction of chemical systems by delayed quasisteady state assumptions, 26 (2014) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.