×

zbMATH — the first resource for mathematics

Output feedback stabilization of fully linearizable systems. (English) Zbl 0762.93069
Summary: An observer-based controller is designed to stabilize a fully linearizable nonlinear system. The system is assumed to be left- invertible and minimum-phase. The controller is robust to uncertainties in modelling the nonlinearities of the system. The design of the controller and the stability analysis employs the techniques of singular perturbations. A new ‘Tikhonov-like’ theorem is presented and used to analyse the system when the control is globally bounded.

MSC:
93D15 Stabilization of systems by feedback
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1137/0321014 · Zbl 0503.93049 · doi:10.1137/0321014
[2] DOI: 10.1007/BF02088007 · Zbl 0666.93019 · doi:10.1007/BF02088007
[3] DOI: 10.1109/TAC.1981.1102785 · Zbl 0473.93056 · doi:10.1109/TAC.1981.1102785
[4] DOI: 10.1109/5.4400 · doi:10.1109/5.4400
[5] DOI: 10.1109/TAC.1984.1103665 · Zbl 0542.93032 · doi:10.1109/TAC.1984.1103665
[6] ESFANDIARI F., Output Feedback Stabilization of Fully Linearizable Systems (1990) · Zbl 0762.93069
[7] DOI: 10.1109/9.76367 · doi:10.1109/9.76367
[8] DOI: 10.1109/TAC.1978.1101792 · Zbl 0391.93019 · doi:10.1109/TAC.1978.1101792
[9] DOI: 10.1109/TAC.1979.1102073 · Zbl 0416.93076 · doi:10.1109/TAC.1979.1102073
[10] DOI: 10.1109/TAC.1987.1104710 · Zbl 0631.93031 · doi:10.1109/TAC.1987.1104710
[11] DOI: 10.1109/TAC.1979.1102181 · Zbl 0427.93020 · doi:10.1109/TAC.1979.1102181
[12] ILIC , M. , and MAK , F. , 1989 , A new class of fast nonlinear voltage controllers and their impact on improved transmission capacity. Proceedings of the 1989 American Control Conference, Pittsburgh , pp. 1246 – 1251 .
[13] ISIDORI A., Nonlinear Control Systems (1989) · Zbl 0693.93046
[14] ISIDORI A., In Modeling and Adaptive Control pp 146– (1986)
[15] KAILATH T., Linear Systems (1980)
[16] KHALIL H. K., Nonlinear Systems (1992) · Zbl 0969.34001
[17] DOI: 10.1109/TAC.1987.1104481 · Zbl 0625.93040 · doi:10.1109/TAC.1987.1104481
[18] DOI: 10.1109/TAC.1981.1102573 · Zbl 0461.93041 · doi:10.1109/TAC.1981.1102573
[19] KOKOTOVIC P. V., Analysis and Design (1986)
[20] DOI: 10.1109/TAC.1986.1104140 · Zbl 0602.93054 · doi:10.1109/TAC.1986.1104140
[21] DOI: 10.1080/00207178508933431 · Zbl 0609.93029 · doi:10.1080/00207178508933431
[22] DOI: 10.1016/0005-1098(84)90069-4 · Zbl 0527.93014 · doi:10.1016/0005-1098(84)90069-4
[23] DOI: 10.1109/TAC.1977.1101508 · Zbl 0354.93027 · doi:10.1109/TAC.1977.1101508
[24] DOI: 10.1109/9.58497 · Zbl 0723.93009 · doi:10.1109/9.58497
[25] SABERI A., IEEE Transactions on Automatic Control Letters 4 pp 301– (1990)
[26] DOI: 10.1080/00207178708933840 · Zbl 0623.93014 · doi:10.1080/00207178708933840
[27] SPONG M. W., Theory and Applications of Nonlinear Control Systems (1986)
[28] SPONG M. W., Robot Dynamics and Control (1989)
[29] DOI: 10.1109/TAC.1987.1104550 · Zbl 0628.93038 · doi:10.1109/TAC.1987.1104550
[30] SUSSMAN , H. J. , and KOKOTOVIC , P. V. , 1989 , Peaking and stabilization. Proceedings of IEEE Conference on Decision and Control, Tampa , Florida , pp. 1379 – 1384 .
[31] YOUNG , K. K. D. , 1977 , Analysis and Synthesis of High-Gain and Variable Structure Feedback Systems . Ph.D. thesis , University of Illinois , Urbana .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.