×

zbMATH — the first resource for mathematics

The logarithmic distribution of leading digits and finitely additive measures. (English) Zbl 0763.11035
MSC:
11K16 Normal numbers, radix expansions, Pisot numbers, Salem numbers, good lattice points, etc.
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bumby, R.; Ellentuck, E., Finitely additive measures and the first digit problem, Fund. math., 65, 33-42, (1969) · Zbl 0179.35601
[2] Cigler, J., Methods of summability and uniform distribution mod 1, Compositio math., 16, 44-51, (1964) · Zbl 0135.10901
[3] Cohen, D.I.A., An explanation of the first digit phenomenon, J. combin. theory ser. A, 20, 367-370, (1976) · Zbl 0336.10052
[4] Diaconis, P., The distribution of leading digits and uniform distribution mod 1, Ann. probability, 5, 72-81, (1977) · Zbl 0364.10025
[5] Duncan, R.L., Note on the initial digit problem, Fibonacci quart., 7, 474-475, (1969) · Zbl 0215.06706
[6] Flehinger, B.J., On the probability that a random integer has initial digit A, Amer. math. monthly, 73, 1056-1061, (1966) · Zbl 0147.17502
[7] Knuth, D.E., (), 238-249
[8] Newcomb, S., Note on the frequency of use of the different digits in natural numbers, Amer. J. math., 4, 39-40, (1881) · JFM 13.0161.01
[9] Raimi, R.A., On the distribution of first significant figures, Amer. math. monthly, 76, 342-348, (1969) · Zbl 0179.48701
[10] Raimi, R.A., The peculiar distribution of first digits, Sci. amer., 109-120, (Dec. 1969)
[11] Raimi, R.A., The first digit problem, Amer. math. monthly, 83, 521-538, (1976) · Zbl 0349.60014
[12] Tsuji, M., On the uniform distribution of numbers mod 1, J. math. soc. Japan, 4, 313-322, (1952) · Zbl 0048.03302
[13] Weyl, H., Über die gleichverteilung von zahlen mod eins, Math. ann., 77, 313-352, (1916) · JFM 46.0278.06
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.