Lovicar, Vladimír; Straškraba, Ivan Remark on cavitation solutions of stationary compressible Navier-Stokes equations in one dimension. (English) Zbl 0763.35074 Czech. Math. J. 41(116), No. 4, 653-662 (1991). Summary: The author investigates the cavitation solutions to the stationary compressible Navier-Stokes equations in one dimension \[ p(\rho)_ x=\rho f,\quad x\in(0,1),\qquad\int^ 1_ 0\rho(x)dx=1,\quad \rho(x)\geq 0,\quad x\in (0,1), \] where \(p\in C^ 1((0,\infty))\), \(p(0+)=p(0)=0\), \(p'(r)>0\) for \(r>0\), \(f=f(x)\), \(f\in L^ \infty(0,1)\).Some examples and existence theorems of this problem are given. Cited in 2 Documents MSC: 35Q30 Navier-Stokes equations 76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics 35A05 General existence and uniqueness theorems (PDE) (MSC2000) Keywords:solutions with vacuum states; examples PDF BibTeX XML Cite \textit{V. Lovicar} and \textit{I. Straškraba}, Czech. Math. J. 41(116), No. 4, 653--662 (1991; Zbl 0763.35074) Full Text: EuDML References: [1] Antoncev S. N., Kažichov A. V., Monachov V. N.: Boundary value problems of the mechanics of inhomogeneous fluids. Novosibirsk: Izdatel. ,,Nauka” Sibirsk. Otdel. (1983)) [2] Beirâo da Veiga H.: An \(L^p\)-theory for the n-dimensional, stationary, compressible Navier-Stokes equations, and the incompressible limit for compressible fluids. The equilibrium solutions. Commun. Math. Phys., 109 (1987), 229-248. · Zbl 0621.76074 [3] Beirâo da Veiga H.: Long time behavior for one dimensional motion of a general barotropic viscous fluid. Quaderni dell’Istituto di Matematiche Applicate ,,U. Dini” (1988/7), Facoltà di Ingegneria - Università di Pisa. · Zbl 0704.76020 [4] Beirâo da Veiga H.: The stability of one dimensional stationary flows of compressible viscous fluids. Quaderni dell’Istituto di Matematiche Applicate ,,U. Dini” (1988/9), Facoltà di Ingegneria - Università di Pisa. · Zbl 0709.35082 [5] Kažichov A. V.: Correctness ”in the large” of mixed boundary value problems for a model system of equations of a viscous gas. Din. Splošnoj Sredy, 21 (1975), 18-27) [6] Kažichov A. V.: Stabilization of solutions of an initial-boundary-value problem for the equations of motion of a barotropic viscous fluid. Dif. Urav. 15 (1979), 662-667, (Russian) = Dif. Eqs. 15, 463-467 (1979). [7] Kažichov A. V., Petrov A. N.: Correctness of the initial-boundary value problem for a model system of equation of multicomponent mixture. Dinamičeskije zadači mechaniki splošnych sred 35, (1978), 62-73, Sibirsk. Otdel. Inst. Gidrodinamiki [8] Lovicar V., Straškraba I., Valli A.: On bounded solutions of one-dimensional compressible Navier-Stokes equations. Preprint No. 42, Math. Inst. Czech. Acad. Sci. (MÚ ČSAV) (1989). · Zbl 0731.35082 [9] Solonnikov V. A., Kažichov A. V.: Existence theorems for the equations of motion of a compressible viscous fluid. Annu. Rev. Fluid Mech. 13 (1981), 79-95. [10] Straškraba I., Valli A.: Asymptotic behaviour of the density for one-dimensional Navier-Stokes equations. Manuscripta Math. 62 (1988), 401 - 416. · Zbl 0687.35074 [11] Šeluchin V. V.: Uniqueness solubility of the problem of piston motion in a viscous gas. Dinamika splošnoj sredy 31, (1977), 132/150. Sibirsk. Otdel. Gidrodinamiki [12] Šeluchin V. V.: Stabilization of solutions to a model problem for piston motion in a viscous gas. Někotoryje problemy matematiki i mechaniki 33, (1978), 134-146, Sibirsk. Otdel. Inst. Gidrodinamiki [13] Šeluchin V. V.: Periodic flows of a viscous gas. Dinamika neodnorodnoj židkosti 42 (1979), 80-102, Sibirsk. Otdel. Inst. Gidrodinamiki [14] Šeluchin V. V.: Bounded, almost-periodic solutions of a viscous gas equation. Din. splošnoj sredy 44 (1980), 147-163) [15] Valli A.: Periodic and stationary solution for compressible Navier-Stokes equations via a stability method. Ann. Sc. Norm. Super. Pisa, C1. Sci., (4) 10 (1938), 607-647. · Zbl 0542.35062 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.