zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
$\phi$-orthogonally additive mappings. I. (English) Zbl 0763.46022
One says that the elements $x,y\in X$ of a vector space $X$ over an Euclidean ordered field are $\varphi$-orthogonal if $\varphi(x,y)=0$ for a non-isotropic bilinear form $\varphi$. In the paper this concept is treated and is generalized for vector spaces over arbitrary fields, sesquilinear forms with respect to the automorphisms of the field and for orthogonally additive mappings with values in Abelian groups.

46C50Generalizations of inner products
Full Text: DOI
[1] M. Fochi, Functional equations onA-orthogonal vectors,Aequationes Math.,38 (1989), 28--40. · Zbl 0679.39006 · doi:10.1007/BF01839491
[2] A. Pinsker, Sur une fonctionnelle dans l’espace de Hilbert,C. R. Acad. Sci. URSS N. S.,20 (1938), 411--414. · Zbl 0020.37001
[3] J. Rätz, On orthogonally additive mappings,Aequationes Math.,28 (1985), 35--49. · Zbl 0569.39006 · doi:10.1007/BF02189390
[4] J. Rätz, On orthogonally additive mappings, II,Publicationes Math. Debrecen.,35 (1988), 241--249.
[5] J. Rätz and Gy. Szabó, On orthogonally additive mappings, IV,Aequationes Math.,38 (1989), 73--85. · Zbl 0679.39005 · doi:10.1007/BF01839496
[6] W. Scharlau,Quadratic and Hermitian Forms, Springer (Berlin-Heidelberg-New York-Tokyo, 1985). · Zbl 0584.10010
[7] K. Sundaresan and O. P. Kapoor,T-orthogonality and nonlinear functional on topological vector spaces,Can. J. Math.,25 (1973), 1121--1131. · Zbl 0268.46012 · doi:10.4153/CJM-1973-120-7
[8] F. Vajzović, On a functional which is additive onA-orthogonal pairs,Glasnik Mat.,21 (1966), 75--81.