zbMATH — the first resource for mathematics

Stability of travelling fronts in a model for flame propagation. I: Linear analysis. (English) Zbl 0763.76033
Im Zusammenhang mit der Berechnung der Flammenausbreitung muß ein Gleichungssystem der Form \(u_ t-\Delta u+\alpha (y)u_ x=vf(u)\), \(v_ t-(\Delta v/Le)+\alpha (y)v_ x=-vf(u)\) gelöst werden. Dabei ist \(Le\) die Lewis-Zahl, die hier gleich eins gesetzt wird. Unter bestimmten Annahmen über die Funktion \(f(u)\) hat das System Lösungen in Form von laufenden Wellen (travelling wave solutions): \(u(t,x,y)=\phi(x+ct,y)\); \(v(t,x,y)=\psi(x+ct,y)\). Es wird gezeigt, daß derartige Lösungen gegenüber kleinen Störungen stabil sind. Dazu wird das obige Gleichungssystem um eine travelling wave solution linearisiert, und es werden die Eigenwerte der so entstandenen Gleichungen untersucht.
Reviewer: M.Heckl (Berlin)

76E99 Hydrodynamic stability
76V05 Reaction effects in flows
80A25 Combustion
Full Text: DOI
[1] S. Agmon, A. Douglis, & L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, II, Comm. Pure Appl. Math., 12 (1959), 623-727; 17 (1964), 35-92. · Zbl 0093.10401
[2] S. Agmon & L. Nirenberg, Properties of solutions of ordinary differential equations in Banach space, Comm. Pure Appl. Math., 16 (1963), 121-239. · Zbl 0117.10001
[3] D. G. Aronson & H. F. Weinberger, Nonlinear diffusion in population genetics, combustion and nerve propagation, Partial differential equations and related topics, Lect. Notes in Math., 446, Springer-Verlag, New York (1975), 5-49. · Zbl 0325.35050
[4] D. G. Aronson & H. F. Weinberger, Multidimensional diffusion arising in population genetics, Adv. Math., 30 (1978), 33-58. · Zbl 0407.92014
[5] H. Berestycki & B. Larrouturou, Quelques aspects mathématiques de la propagation des flammes prémélangées, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, 10, H. Brezis & J. L. Lions, ed., Pitman, Longman, Harlow (U.K.), 1990.
[6] H. Berestycki, B. Larrouturou, & P. L. Lions, Multidimensional travelling wave solutions of a flame propagation model, Arch. Rational Mech. Anal., 111 (1990), 33-49. · Zbl 0711.35066
[7] H. Berestycki, B. Nicolaenko & B. Scheurer, Travelling wave solutions to combustion models and their singular limits, SIAM J. Math. Anal., 16 (1985), 1207-1242. · Zbl 0596.76096
[8] H. Berestycki & L. Nirenberg, Some qualitative properties of solutions of semilinear equations in cylindrical domains, Analysis et Cetera (dedicated to J. Moser), P. H. Rabinowitz & E. Zehnder, eds., Academic Press, New York, 1990, 115-164. · Zbl 0705.35004
[9] H. Brezis, Analyse fonctionnelle: théorie et applications, Masson, Paris, 1983.
[10] J. D. Buckmaster & G. S. S. Ludford, Theory of laminar flames, Cambridge Univ. Press, Cambridge, 1982. · Zbl 0557.76001
[11] E. A. Coddington & N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955. · Zbl 0064.33002
[12] P. C. Fife & J. B. McLeod, The approach of solutions of nonlinear Diffusion equations by travelling front solutions, Arch. Rational Mech. Anal., 65 (1977) 335-361. · Zbl 0361.35035
[13] P. S. Hagan, Travelling wave and multiple travelling wave solutions of parabolic equations, SIAM J. Math. Anal., 13 (1982), 717-738. · Zbl 0504.35050
[14] A. N. Kolmogorov, I. G. Petrovskii, & N. S. Piskunov, A study of the equation of diffusion with increase in the quantity of matter and its application to a biological problem, Bjul. Moskovskogo Gos. Univ., 17 (1937), 1-26.
[15] B. Larrouturou, The equations of one-dimensional unsteady flame propagation: existence and uniqueness, SIAM J. Math. Anal., 19 (1988), 32-59. · Zbl 0662.35090
[16] A. Pazy, Asymptotic expansions of solutions of ordinary differential equations in Hilbert space, Arch. Rational Mech. Anal., 24 (1967), 193-218. · Zbl 0147.12303
[17] M. Protter & H. F. Weinberger, Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, 1967. · Zbl 0153.13602
[18] J. M. Roquejoffre, Stability of travelling fronts in a model for flame propagation, Part II: Nonlinear stability, Arch. Rational Mech. Anal., 117 (1992), 119-153. · Zbl 0763.76034
[19] J. M. Roquejoffre, L. Sainsaulieu, & D. Terman, On the stability of steady planar premixed flames, in preparation.
[20] D. H. Sattinger, Stability of waves of nonlinear parabolic equations, Adv. Math., 22 (1976), 312-355. · Zbl 0344.35051
[21] G. I. Sivashinsky, Instabilities, pattern formation and turbulence in flames, in ?Modélisation des phénomènes de combustion?, Direction des Etudes et Recherches d’Electricité de France, Eyrolles, Paris, 1985.
[22] F. A. Williams, Combustion theory, second edition, Benjamin Cummings, Menlo Park, 1985.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.