×

zbMATH — the first resource for mathematics

Stability of travelling fronts in a model for flame propagation. II: Nonlinear stability. (English) Zbl 0763.76034
In Fortsetzung der Arbeit mit dem gleichnamigen Titel [s. das vorstehende Referat] wird gezeigt, daß die laufenden Wellen nicht nur bei kleinen (linearen) Störungen, sondern auch bei großen (nichtlinearen) Störungen stabil sind. Stabilität heißt dabei, daß sich die gestörte und die ungestörte Lösungen während der Ausbreitung immer mehr nähern. Die entsprechenden sehr umfangreichen Beweise sind angegeben.
Reviewer: M.Heckl (Berlin)

MSC:
76E99 Hydrodynamic stability
76E30 Nonlinear effects in hydrodynamic stability
76V05 Reaction effects in flows
80A25 Combustion
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Agmon, A. Douglis & L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, II, Comm. Pure Appl. Math., 12 (1959), 623-727; 17 (1964), 35-92. · Zbl 0093.10401
[2] S. Agmon & L. Nirenberg, Properties of solutions of ordinary differential equations in Banach space, Comm. Pure Appl. Math., 16 (1963), pp. 121-239. · Zbl 0117.10001
[3] H. Berestycki & B. Larrouturou, Quelques aspects mathématiques de la propagation des flammes prémélangées, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, 10, H. Brezis & J. L. Lions, eds., Pitman Longman, Harlow (U.K), 1990
[4] H. Berestycki, B. Larrouturou & P. L. Lions, Multidimensional travelling wave solutions of a flame propagation model, Arch. Rational Mech. Anal., 111 (1990), 33-49. · Zbl 0711.35066
[5] H. Berestycki, B. Larrouturou & J. M. Roquejoffre, Stability of travelling fronts in a model for flame propagation, Part I: Linear analysis, Arch. Rational Mech. Anal., 117 (1992), 97-117. · Zbl 0763.76033
[6] H. Berestycki & L. Nirenberg, Some qualitative properties of solutions of semilinear equations in cylindrical domains, Analysis et Cetera (dedicated to J. Moser), P. H. Rabinowitz & E. Zehnder, eds., Academic Press, New York, 1990, 115-164. · Zbl 0705.35004
[7] H. Berestycki & L. Nirenberg, KPP in higher dimensions, in press. · Zbl 0780.35054
[8] J. M. Bony, Principe du maximum dans les espaces de Sobolev, C. R. Acad. Sci. Paris Ser. A, 265 (1967), 333-336. · Zbl 0164.16803
[9] H. Brezis, Analyse fonctionnelle: Théorie et applications, Masson, Paris, 1983.
[10] J. Dieudonné, Eléments d’analyse, t. 3, Gauthier-Villars, Paris, 1974.
[11] N. Dunford & J. T. Schwartz, Linear operators, parts I and II, Wiley-Interscience, New York, 1966. · Zbl 0146.12601
[12] I. C. Gohberg & M. G. Krein, Introduction to the theory of linear non-selfadjoint operators, Transl. Math. Monog. 18, Am. Math. Soc., Providence, R.I., 1969. · Zbl 0181.13504
[13] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, Springer-Verlag, New York, 1981. · Zbl 0456.35001
[14] A. Pazy, Asymptotic expansions of solutions of ordinary differential equations in Hilbert space, Arch. Rational Mech. Anal., 24 (1967), 193-218. · Zbl 0147.12303
[15] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983. · Zbl 0516.47023
[16] M. Protter & H. F. Weinberger, Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, 1967. · Zbl 0153.13602
[17] D. H. Sattinger, Stability of waves of nonlinear parabolic equations, Adv. Math., 22 (1976), 312-355. · Zbl 0344.35051
[18] J. Smoller, Shock waves and reaction-diffusion equations, Springer-Verlag, New York, 1983. · Zbl 0508.35002
[19] H. B. Stewart, Generation of analytic semigroups by strongly elliptic operators under general boundary conditions, Trans. Am. Math. Soc., 259 (1980), 299-310. · Zbl 0451.35033
[20] A. E. Taylor, Introduction to functional analysis, Wiley, New York, 1958. · Zbl 0081.10202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.