Daube, O. Resolution of the 2D Navier-Stokes equations in velocity-vorticity form by means of an influence matrix technique. (English) Zbl 0763.76046 J. Comput. Phys. 103, No. 2, 402-414 (1992). Summary: An influence matrix technique is proposed to enforce both the continuity equation and the definition of the vorticity in the treatment of the two- dimensional incompressible Navier-Stokes equations. It is shown and supported by numerical experiments that at each time step the divergence is actually equal to zero within machine accuracy. The same result is obtained for the definition of the vorticity. Cited in 58 Documents MSC: 76M20 Finite difference methods applied to problems in fluid mechanics 76D05 Navier-Stokes equations for incompressible viscous fluids Keywords:continuity equation; divergence PDFBibTeX XMLCite \textit{O. Daube}, J. Comput. Phys. 103, No. 2, 402--414 (1992; Zbl 0763.76046) Full Text: DOI References: [1] Speziale, C. G., J. Comput. Phys., 73, 476 (1987) · Zbl 0632.76049 [2] Guevremont, G.; Habashi, W. G.; Hafez, M. M., Int. J. Num. Methods Fluids, 10, 461 (1990) · Zbl 0684.76039 [3] Fasel, H., J. Fluid Mech., 78, 355 (1976) · Zbl 0404.76041 [4] Dennis, S. C.R.; Ingham, D. B.; Cook, R. N., J. Comput. Phys., 33, 325 (1979) · Zbl 0421.76019 [5] Osswald, G. A.; Ghia, K. N.; Ghia, U., (Dwoyer, D. L.; etal., Proceedings, 11th International Conference on Numerical Methods in Fluid Dynamics. Proceedings, 11th International Conference on Numerical Methods in Fluid Dynamics, Williamsburg, VA, 1988 (1989), Springer-Verlag: Springer-Verlag Berlin), 454 [6] Gatski, T. B.; Grosch, C. E.; Rose, M. E., J. Comput. Phys., 48, 1 (1982) · Zbl 0502.76040 [7] Gatski, T. B.; Grosch, C. E.; Rose, M. E., J. Comput. Phys., 82, 298 (1989) · Zbl 0667.76051 [8] Orlandi, P., Comput. Fluids, 15, 137 (1987) · Zbl 0616.76034 [9] Toumi, A.; Phuoc Loc, T., (Taylor, C.; etal., Proceedings, 5th International Conference on Numerical Methods in Laminar and Turbulent Flows. Proceedings, 5th International Conference on Numerical Methods in Laminar and Turbulent Flows, Montreal, Canada, 1987 (1987), Pineridge Press: Pineridge Press Swansea, UK), 595 [10] Cottet, G. H., (Catlish, R. E., Mathematical Aspects of Vortex Methods (1988), SIAM: SIAM Providence, RI), 129 [11] Labidi, W.; Phuoc Loc, T., (Dwoyer, D. L.; etal., Proceedings, 11th International Conference on Numerical Methods in Fluids Dynamics. Proceedings, 11th International Conference on Numerical Methods in Fluids Dynamics, Williamsburg, VA (1989), Springer-Verlag: Springer-Verlag Berlin), 354 [12] Farouk, B.; Fugesi, T., Int. J. Num. Methods Fluids, 5, 1017 (1985) · Zbl 0586.76039 [13] Stella, F.; Guj, G., Int. J. Num. Methods Fluids, 9, 1285 (1989) · Zbl 0684.76037 [14] Daube, O.; Guermond, J. L.; Sellier, A., C. R. Acad. Sci. Paris Sir. II, 313, 377 (1991) · Zbl 0735.76016 [15] Hockney, R., Methods Comput. Phys., 9, 135 (1970) [16] Proskurowski, W.; Widlund, O., Math. Comput., 30, 433 (1976) · Zbl 0332.65057 [17] Proskurowski, W., ACM Trans. Math. Software, 5, 36 (1979) · Zbl 0394.65029 [18] Pares-Sierra, A.; Vallis, G. K., J. Comput. Phys., 82, 398 (1989) · Zbl 0676.65097 [19] Kleiser, L.; Schumann, U., (Hirschel, E. H., Proceedings, 3rd GAMM-Conference on Numerical Methods in Fluid Mechanics. Proceedings, 3rd GAMM-Conference on Numerical Methods in Fluid Mechanics, Köln, Germany, 1979. Proceedings, 3rd GAMM-Conference on Numerical Methods in Fluid Mechanics. Proceedings, 3rd GAMM-Conference on Numerical Methods in Fluid Mechanics, Köln, Germany, 1979, Notes on Num. Fluid Mech. (1980), Vieweg: Vieweg Wiesbaden), 165 · Zbl 0463.76020 [20] Le Quérée, P.; Alziary de Roquefort, T., C.R. Acad. Sci. Paris, Sér. II, 294, 941 (1982) · Zbl 0489.76037 [21] Le Quéré, P.; Alziary de Roquefort, T., J. Comput. Phys., 57, 210 (1985) · Zbl 0585.76128 [22] Tuckermann, L., J. Comput. Phys., 80, 403 (1989) · Zbl 0668.76027 [23] Dennis, S. C.R.; Quartapelle, L., J. Comput. Phys., 52, 448 (1983) · Zbl 0529.76028 [24] Tuckermann, L., (Ph.D. thesis (1983), MIT: MIT Cambridge, MA), (unpublished) [25] Vanel, J. M.; Peyret, R.; Bontoux, P., (Morton, K. W.; Baines, M. J., Proceedings, International Conference on Numerical Methods for Fluids Dynamics. Proceedings, International Conference on Numerical Methods for Fluids Dynamics, Reading, UK, 1985 (1986), Clarendon Press: Clarendon Press New York), 463 [26] Quartapelle, L.; Napolitano, M., J. Comput. Phys., 62, 340 (1986) · Zbl 0604.76021 [27] Quartapelle, L.; Muzzio, A., (De Vahl Davis, G.; Fletcher, C., Proceedings, International Symposium on Computational Fluid Dynamics. Proceedings, International Symposium on Computational Fluid Dynamics, Sydney, Australia, 1987 (1988), North-Holland: North-Holland Amsterdam), 609 [28] Quartapelle, L., (Proceedings, International Conference for Computational Methods in Flow Analysis. Proceedings, International Conference for Computational Methods in Flow Analysis, Okayama, Japan (1988)), 337 [29] Glowinski, R.; Pironneau, O., SIAM Rev., 21, 167 (1979) · Zbl 0427.65073 [30] Peyret, R.; Taylor, T. D., Computational Methods for Fluid Flows, ((1983), Springer-Verlag: Springer-Verlag New York), 151 · Zbl 0514.76001 [31] Hockney, R. W., J. Assoc. Comput. Mach., 12, 95 (1965) · Zbl 0139.10902 [32] Fischer, D.; Golub, G.; Hald, O.; Leiva, C.; Widlund, O., Math. Comput., 28, 349 (1974) · Zbl 0277.65065 [33] Daube, O.; Phuoc Loc, T., J. Méc., 17, 651 (1978) · Zbl 0399.76039 [34] Escudier, M. P., Exp. Fluids, 2, 189 (1984) [35] Lugt, H. J.; Abboud, M., J. Fluid Mech., 179, 179 (1987) · Zbl 0622.76121 [36] Lopez, J. M., J. Fluid Mech., 221, 533 (1990) · Zbl 0715.76096 [37] Daube, O.; Sørensen, J. N., C.R. Acad. Sci. Paris Sir. II, 308, 463 (1989) · Zbl 0657.76082 [38] Rhie, C. M.; Chow, W. L., AIAA J., 21, 1525 (1983) · Zbl 0528.76044 [39] Strikwerda, J. C., SIAM J. Sci. Stat. Comput., 5, 56 (1984) · Zbl 0546.76052 [40] Schneider, G.; Raw, M., Numer. Heat Transf., 11, 363 (1987) · Zbl 0631.76107 [41] Armfield, S. W., Comput. & Fluids, 20, 1 (1991) · Zbl 0731.76044 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.