×

zbMATH — the first resource for mathematics

Resolution of the 2D Navier-Stokes equations in velocity-vorticity form by means of an influence matrix technique. (English) Zbl 0763.76046
Summary: An influence matrix technique is proposed to enforce both the continuity equation and the definition of the vorticity in the treatment of the two- dimensional incompressible Navier-Stokes equations. It is shown and supported by numerical experiments that at each time step the divergence is actually equal to zero within machine accuracy. The same result is obtained for the definition of the vorticity.

MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Speziale, C.G., J. comput. phys., 73, 476, (1987)
[2] Guevremont, G.; Habashi, W.G.; Hafez, M.M., Int. J. num. methods fluids, 10, 461, (1990)
[3] Fasel, H., J. fluid mech., 78, 355, (1976)
[4] Dennis, S.C.R.; Ingham, D.B.; Cook, R.N., J. comput. phys., 33, 325, (1979)
[5] Osswald, G.A.; Ghia, K.N.; Ghia, U., (), 454
[6] Gatski, T.B.; Grosch, C.E.; Rose, M.E., J. comput. phys., 48, 1, (1982)
[7] Gatski, T.B.; Grosch, C.E.; Rose, M.E., J. comput. phys., 82, 298, (1989)
[8] Orlandi, P., Comput. fluids, 15, 137, (1987)
[9] Toumi, A.; Phuoc Loc, T., (), 595
[10] Cottet, G.H., (), 129
[11] Labidi, W.; Phuoc Loc, T., (), 354
[12] Farouk, B.; Fugesi, T., Int. J. num. methods fluids, 5, 1017, (1985)
[13] Stella, F.; Guj, G., Int. J. num. methods fluids, 9, 1285, (1989)
[14] Daube, O.; Guermond, J.L.; Sellier, A., C. R. acad. sci. Paris sir. II, 313, 377, (1991)
[15] Hockney, R., Methods comput. phys., 9, 135, (1970)
[16] Proskurowski, W.; Widlund, O., Math. comput., 30, 433, (1976)
[17] Proskurowski, W., ACM trans. math. software, 5, 36, (1979)
[18] Pares-Sierra, A.; Vallis, G.K., J. comput. phys., 82, 398, (1989)
[19] Kleiser, L.; Schumann, U., (), 165
[20] Le Quérée, P.; Alziary de Roquefort, T., C.R. acad. sci. Paris, Sér. II, 294, 941, (1982)
[21] Le Quéré, P.; Alziary de Roquefort, T., J. comput. phys., 57, 210, (1985)
[22] Tuckermann, L., J. comput. phys., 80, 403, (1989)
[23] Dennis, S.C.R.; Quartapelle, L., J. comput. phys., 52, 448, (1983)
[24] Tuckermann, L., (), (unpublished)
[25] Vanel, J.M.; Peyret, R.; Bontoux, P., (), 463
[26] Quartapelle, L.; Napolitano, M., J. comput. phys., 62, 340, (1986)
[27] Quartapelle, L.; Muzzio, A., (), 609
[28] Quartapelle, L., (), 337
[29] Glowinski, R.; Pironneau, O., SIAM rev., 21, 167, (1979)
[30] Peyret, R.; Taylor, T.D., Computational methods for fluid flows, (), 151
[31] Hockney, R.W., J. assoc. comput. Mach., 12, 95, (1965)
[32] Fischer, D.; Golub, G.; Hald, O.; Leiva, C.; Widlund, O., Math. comput., 28, 349, (1974)
[33] Daube, O.; Phuoc Loc, T., J. Méc., 17, 651, (1978)
[34] Escudier, M.P., Exp. fluids, 2, 189, (1984)
[35] Lugt, H.J.; Abboud, M., J. fluid mech., 179, 179, (1987)
[36] Lopez, J.M., J. fluid mech., 221, 533, (1990)
[37] Daube, O.; Sørensen, J.N., C.R. acad. sci. Paris sir. II, 308, 463, (1989)
[38] Rhie, C.M.; Chow, W.L., Aiaa j., 21, 1525, (1983)
[39] Strikwerda, J.C., SIAM J. sci. stat. comput., 5, 56, (1984)
[40] Schneider, G.; Raw, M., Numer. heat transf., 11, 363, (1987)
[41] Armfield, S.W., Comput. & fluids, 20, 1, (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.