Hallin, Marc; La Vecchia, Davide; Liu, Hang Rank-based testing for semiparametric VAR models: a measure transportation approach. (English) Zbl 07634391 Bernoulli 29, No. 1, 229-273 (2023). Summary: We develop a class of tests for semiparametric vector autoregressive (VAR) models with unspecified innovation densities based on the recent measure-transportation-based concepts of multivariate center-outward ranks and signs. We show that these concepts, combined with Le Cam’s asymptotic theory of statistical experiments, yield novel testing procedures, which (a) are valid under a broad class of innovation densities (possibly non-elliptical, skewed, and/or with infinite moments), (b) are optimal (locally asymptotically maximin or most stringent) at selected ones, and (c) are robust against additive outliers. In order to show this, we establish, for a general class of center-outward rank-based serial statistics, a Hájek asymptotic representation result, of independent interest, which allows for a rank-based reconstruction of central sequences. As an illustration, we consider the problems of testing the absence of serial correlation in multiple-output and possibly non-linear regression (an extension of the classical Durbin-Watson problem) and the sequential identification of the order \(p\) of a \(\mathrm{VAR}(p)\) model. A Monte Carlo comparative study of our tests and their routinely-applied Gaussian competitors demonstrates the benefits (in terms of size, power, and robustness) of our methodology; these benefits are particularly significant in the presence of asymmetric and leptokurtic innovation densities. A real-data application concludes the paper. Cited in 4 Documents MSC: 62Gxx Nonparametric inference 62Mxx Inference from stochastic processes 62Hxx Multivariate analysis Keywords:distribution-freeness; Durbin-Watson test; Hájek representation; local asymptotic normality; multivariate ranks; VAR order selection × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link References: [1] Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory (Tsahkadsor, 1971) (B.N. Petrov and F. Csaki, eds.) 267-281. · Zbl 0283.62006 [2] Azzalini, A. and Capitanio, A. (2003). Distributions generated by perturbation of symmetry with emphasis on a multivariate skew \(t\)-distribution. J. R. Stat. Soc. Ser. B. Stat. Methodol. 65 367-389. 10.1111/1467-9868.00391 · Zbl 1065.62094 [3] Benghabrit, Y. and Hallin, M. (1992). Optimal rank-based tests against first-order superdiagonal bilinear dependence. J. Statist. Plann. Inference 32 45-61. 10.1016/0378-3758(92)90151-H · Zbl 0752.62036 [4] Benghabrit, Y. and Hallin, M. (1996). Rank-based tests for autoregressive against bilinear serial dependence. J. Nonparametr. Stat. 6 253-272. 10.1080/10485259608832674 · Zbl 0885.62054 [5] Bertsekas, D.P. (1991). Linear Network Optimization: Algorithms and Codes. Cambridge, MA: MIT Press. · Zbl 0754.90059 [6] Boldin, M.V. (2012). Robustness of sign tests in autoregression. Moscow Math. Bull. 67 112-115. · Zbl 1417.62239 [7] Boldin, M.V. (2013). Robustness of sign tests for testing hypotheses about order of autoregression. Theory Probab. Appl. 57 663-670. 10.1137/S0040585X97986242 · Zbl 1281.62189 [8] Burkard, R., Dell’Amico, M. and Martello, S. (2009). Assignment Problems. Philadelphia, PA: SIAM. 10.1137/1.9780898717754 · Zbl 1196.90002 [9] Cassart, D., Hallin, M. and Paindaveine, D. (2010). On the estimation of cross-information quantities in rank-based inference. In Nonparametrics and Robustness in Modern Statistical Inference and Time Series Analysis: A Festschrift in Honor of Professor Jana Jurečková (J. Antoch, M. Hušková and P.K. Sen, eds.). Inst. Math. Stat. (IMS) Collect. 7 35-45. Beachwood, OH: IMS. · Zbl 1228.62003 [10] Chernozhukov, V., Galichon, A., Hallin, M. and Henry, M. (2017). Monge-Kantorovich depth, quantiles, ranks and signs. Ann. Statist. 45 223-256. 10.1214/16-AOS1450 · Zbl 1426.62163 [11] Croux, C. and Joossens, K. (2008). Robust estimation of the vector autoregressive model by a least trimmed squares procedure. COMPSTAT 2008 489-501. · Zbl 1148.62067 [12] Deb, N., Bhattacharya, B. and Sen, B. (2019). Efficiency lower bounds for distribution-free Hotelling-type two-sample tests based on optimal transport. Available at arXiv:2104.01986. [13] Deb, N. and Sen, B. (2022). Multivariate rank-based distribution-free nonparametric testing using measure transportation. J. Amer. Statist. Assoc. To appear. · Zbl 1514.62089 [14] del Barrio, E., González-Sanz, A. and Hallin, M. (2020). A note on the regularity of optimal-transport-based center-outward distribution and quantile functions. J. Multivariate Anal. 180 104671. 10.1016/j.jmva.2020.104671 · Zbl 1450.62047 [15] Dick, J. and Pillichshammer, F. (2014). Discrepancy theory and quasi-Monte Carlo integration. In A Panorama of Discrepancy Theory (W. Chen, A. Sirvastava and G. Travaglini, eds.). Lecture Notes in Math. 2107 539-619. Cham: Springer. 10.1007/978-3-319-04696-9_9 · Zbl 1358.11086 [16] Durbin, J. and Watson, G.S. (1950). Testing for serial correlation in least squares regression. I. Biometrika 37 409-428. 10.1093/biomet/37.3-4.409 · Zbl 0039.35803 [17] Durbin, J. and Watson, G.S. (1951). Testing for serial correlation in least squares regression. II. Biometrika 38 159-178. 10.1093/biomet/38.1-2.159 · Zbl 0042.38201 [18] Figalli, A. (2018). On the continuity of center-outward distribution and quantile functions. Nonlinear Anal. 177 413-421. 10.1016/j.na.2018.05.008 · Zbl 1433.62132 [19] Garel, B. and Hallin, M. (1995). Local asymptotic normality of multivariate ARMA processes with a linear trend. Ann. Inst. Statist. Math. 47 551-579. · Zbl 0841.62076 [20] Garel, B. and Hallin, M. (1999). Rank-based autoregressive order identification. J. Amer. Statist. Assoc. 94 1357-1371. 10.2307/2669948 · Zbl 0994.62089 [21] Ghosal, P. and Sen, B. (2022). Multivariate ranks and quantiles using optimal transportation and applications to goodness-of-fit testing. Ann. Statist. To appear. [22] Hájek, J. (1961). Some extensions of the Wald-Wolfowitz-Noether theorem. Ann. Math. Stat. 32 506-523. 10.1214/aoms/1177705057 · Zbl 0107.13404 [23] Hájek, J. and Šidák, Z. (1967). Theory of Rank Tests. New York: Academic Press. · Zbl 0161.38102 [24] Hallin, M. (1986). Nonstationary \(q\)-dependent processes and time-varying moving-average models: Invertibility properties and the forecasting problem. Adv. in Appl. Probab. 18 170-210. 10.2307/1427242 · Zbl 0597.62096 [25] Hallin, M. (1994). On the Pitman non-admissibility of correlogram-based methods. J. Time Series Anal. 15 607-611. 10.1111/j.1467-9892.1994.tb00215.x · Zbl 0807.62068 [26] Hallin, M. (2017). On distribution and quantile functions, ranks and signs in \[{\mathbb{R}^d} \]. ECARES. Working paper. [27] Hallin, M., del Barrio, E., Cuesta-Albertos, J. and Matrán, C. (2021). Distribution and quantile functions, ranks and signs in dimension \(d\): A measure transportation approach. Ann. Statist. 49 1139-1165. 10.1214/20-aos1996 · Zbl 1468.62282 [28] Hallin, M., Hlubinka, D. and Hudecová, Š. (2022). Fully distribution-free center-outward rank tests for multiple-output regression and MANOVA. J. Amer. Statist. Assoc. To appear. [29] Hallin, M., Ingenbleek, J.-F. and Puri, M.L. (1985). Linear serial rank tests for randomness against ARMA alternatives. Ann. Statist. 13 1156-1181. 10.1214/aos/1176349662 · Zbl 0584.62064 [30] Hallin, M. and La Vecchia, D. (2017). R-estimation in semiparametric dynamic location-scale models. J. Econometrics 196 233-247. 10.1016/j.jeconom.2016.08.002 · Zbl 1403.91274 [31] Hallin, M. and La Vecchia, D. (2020). A simple R-estimation method for semiparametric duration models. J. Econometrics 218 736-749. 10.1016/j.jeconom.2020.04.036 · Zbl 1464.62505 [32] Hallin, M., La Vecchia, D. and Liu, H. (2022). Center-outward R-estimation for semiparametric VARMA models. J. Amer. Statist. Assoc. To appear. · Zbl 1507.62286 [33] Hallin, M. and Mélard, G. (1988). Rank-based tests for randomness against first-order serial dependence. J. Amer. Statist. Assoc. 83 1117-1128. [34] Hallin, M., Oja, H. and Paindaveine, D. (2006). Semiparametrically efficient rank-based inference for shape. II. Optimal \(R\)-estimation of shape. Ann. Statist. 34 2757-2789. 10.1214/009053606000000948 · Zbl 1115.62059 [35] Hallin, M. and Paindaveine, D. (2002). Optimal tests for multivariate location based on interdirections and pseudo-Mahalanobis ranks. Ann. Statist. 30 1103-1133. 10.1214/aos/1031689019 · Zbl 1101.62348 [36] Hallin, M. and Paindaveine, D. (2004). Rank-based optimal tests of the adequacy of an elliptic VARMA model. Ann. Statist. 32 2642-2678. 10.1214/009053604000000724 · Zbl 1076.62044 [37] Hallin, M. and Paindaveine, D. (2004). Multivariate signed-rank tests in vector autoregressive order identification. Statist. Sci. 19 697-711. 10.1214/088342304000000602 · Zbl 1100.62577 [38] Hallin, M. and Paindaveine, D. (2005). Affine-invariant aligned rank tests for the multivariate general linear model with VARMA errors. J. Multivariate Anal. 93 122-163. 10.1016/j.jmva.2004.01.005 · Zbl 1087.62098 [39] Hallin, M. and Paindaveine, D. (2006). Asymptotic linearity of serial and nonserial multivariate signed rank statistics. J. Statist. Plann. Inference 136 1-32. 10.1016/j.jspi.2004.05.013 · Zbl 1082.62049 [40] Hallin, M. and Paindaveine, D. (2006). Semiparametrically efficient rank-based inference for shape. I. Optimal rank-based tests for sphericity. Ann. Statist. 34 2707-2756. 10.1214/009053606000000731 · Zbl 1114.62066 [41] Hallin, M. and Paindaveine, D. (2008). Optimal rank-based tests for homogeneity of scatter. Ann. Statist. 36 1261-1298. 10.1214/07-AOS508 · Zbl 1360.62288 [42] Hallin, M., Paindaveine, D. and Verdebout, T. (2010). Optimal rank-based testing for principal components. Ann. Statist. 38 3245-3299. 10.1214/10-AOS810 · Zbl 1373.62295 [43] Hallin, M., Paindaveine, D. and Verdebout, T. (2013). Optimal rank-based tests for common principal components. Bernoulli 19 2524-2556. 10.3150/12-BEJ461 · Zbl 1457.62182 [44] Hallin, M., Paindaveine, D. and Verdebout, T. (2014). Efficient R-estimation of principal and common principal components. J. Amer. Statist. Assoc. 109 1071-1083. 10.1080/01621459.2014.880057 · Zbl 1368.62160 [45] Hallin, M. and Puri, M.L. (1988). Optimal rank-based procedures for time series analysis: Testing an ARMA model against other ARMA models. Ann. Statist. 16 402-432. 10.1214/aos/1176350712 · Zbl 0659.62111 [46] Hallin, M. and Puri, M.L. (1991). Time series analysis via rank order theory: Signed-rank tests for ARMA models. J. Multivariate Anal. 39 1-29. 10.1016/0047-259X(91)90002-J · Zbl 0751.62041 [47] Hallin, M. and Puri, M.L. (1994). Aligned rank tests for linear models with autocorrelated error terms. J. Multivariate Anal. 50 175-237. 10.1006/jmva.1994.1040 · Zbl 0805.62050 [48] Hallin, M. and Vermandele, C. (1996). An elementary proof of asymptotic normality for serial rank statistics. In Research Developments in Probability and Statistics (E. Brunner and M. Denker, eds.). 163-191. Utrecht: VSP. · Zbl 0874.62049 [49] Hallin, M. and Werker, B.J.M. (2003). Semi-parametric efficiency, distribution-freeness and invariance. Bernoulli 9 137-165. 10.3150/bj/1068129013 · Zbl 1020.62042 [50] Judd, K.L. (1998). Numerical Methods in Economics. Cambridge, MA: MIT Press. · Zbl 0924.65001 [51] Kreiss, J.-P. (1987). On adaptive estimation in stationary ARMA processes. Ann. Statist. 15 112-133. 10.1214/aos/1176350256 · Zbl 0616.62042 [52] Le Cam, L. (1986). Asymptotic Methods in Statistical Decision Theory. Springer Series in Statistics. New York: Springer. 10.1007/978-1-4612-4946-7 · Zbl 0605.62002 [53] Le Cam, L. and Yang, G.L. (2000). Asymptotics in Statistics: Some Basic Concepts, 2nd ed. Springer Series in Statistics. New York: Springer. 10.1007/978-1-4612-1166-2 · Zbl 0952.62002 [54] Lehmann, E.L. and Romano, J.P. (2005). Testing Statistical Hypotheses, 3rd ed. Springer Texts in Statistics. New York: Springer. · Zbl 1076.62018 [55] Machado, J.A.F. (1993). Robust model selection and \(M\)-estimation. Econometric Theory 9 478-493. 10.1017/S0266466600007775 [56] Mancini, L., Ronchetti, E. and Trojani, F. (2005). Optimal conditionally unbiased bounded-influence inference in dynamic location and scale models. J. Amer. Statist. Assoc. 100 628-641. 10.1198/016214504000001402 · Zbl 1117.62396 [57] Mélard, G. (2022). An indirect proof for the asymptotic properties of VARMA model estimators. Econom. Stat. 21 96-111. 10.1016/j.ecosta.2020.12.004 [58] Niederreiter, H. (1992). Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF Regional Conference Series in Applied Mathematics 63. Philadelphia, PA: SIAM. 10.1137/1.9781611970081 · Zbl 0761.65002 [59] Peyré, G. and Cuturi, M. (2019). Computational optimal transport with applications to data science. Found. Trends Mach. Learn. 11 355-607. [60] Pötscher, B.M. (1983). Order estimation in ARMA-models by Lagrangian multiplier tests. Ann. Statist. 11 872-885. · Zbl 0521.62072 [61] Ronchetti, E. (1997). Robustness aspects of model choice. Statist. Sinica 7 327-338. · Zbl 0900.62172 [62] Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461-464. · Zbl 0379.62005 · doi:10.1214/aos/1176344136 [63] Shi, H., Hallin, M., Drton, M. and Han, F. (2021). Center-outward sign- and rank-based quadrant, Spearman, and Kendall tests for multivariate independence. Available at arXiv:2111.15567. [64] Shi, H., Hallin, M., Drton, M. and Han, F. (2022). On universally consistent and fully distribution-free rank tests of vector independence. Ann. Statist. To appear. · Zbl 1539.62126 [65] Shorack, G.R. (2000). Probability for Statisticians. Springer Texts in Statistics. New York: Springer. · Zbl 0951.62005 [66] van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3. Cambridge: Cambridge Univ. Press. 10 · Zbl 0910.62001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.