Song, Yanglei; Chen, Xiaohui; Kato, Kengo Stratified incomplete local simplex tests for curvature of nonparametric multiple regression. (English) Zbl 07634394 Bernoulli 29, No. 1, 323-349 (2023). Summary: Principled nonparametric tests for regression curvature in \(\mathbb{R}^d\) are often statistically and computationally challenging. This paper introduces the stratified incomplete local simplex (SILS) tests for joint concavity of nonparametric multiple regression. The SILS tests with suitable bootstrap calibration are shown to achieve simultaneous guarantees on dimension-free computational complexity, polynomial decay of the uniform error-in-size, and power consistency for general (global and local) alternatives. To establish these results, we develop a general theory for incomplete \(U\)-processes with stratified random sparse weights. Novel technical ingredients include maximal inequalities for the supremum of multiple incomplete \(U\)-processes. Cited in 1 Document MSC: 62Gxx Nonparametric inference 62Exx Statistical distribution theory 60Fxx Limit theorems in probability theory Keywords:curvature testing; incomplete \(U\)-processes; nonparametric regression; stratification × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link References: [1] Abrevaya, J. and Jiang, W. (2005). A nonparametric approach to measuring and testing curvature. J. Bus. Econom. Statist. 23 1-19. 10.1198/073500104000000316 [2] Arcones, M.A. and Giné, E. (1993). Limit theorems for \(U\)-processes. Ann. Probab. 21 1494-1542. · Zbl 0789.60031 [3] Arcones, M.A. and Giné, E. (1994). \(U\)-processes indexed by Vapnik-Červonenkis classes of functions with applications to asymptotics and bootstrap of \(U\)-statistics with estimated parameters. Stochastic Process. Appl. 52 17-38. 10.1016/0304-4149(94)90098-1 · Zbl 0807.62014 [4] Blom, G. (1976). Some properties of incomplete \(U\)-statistics. Biometrika 63 573-580. 10.1093/biomet/63.3.573 · Zbl 0352.62034 [5] Borenstein, S. and Farrell, J. (2007). Do investors forecast fat firms? Evidence from the gold-mining industry. Rand J. Econ. 38 626-647. [6] Borovskikh, Y.V. (1996). U-Statistics in Banach Spaces. Utrecht: VSP. · Zbl 0865.60004 [7] Bowman, A., Jones, M. and Gijbels, I. (1998). Testing monotonicity of regression. J. Comput. Graph. Statist. 7 489-500. [8] Brown, B.M. and Kildea, D.G. (1978). Reduced \(U\)-statistics and the Hodges-Lehmann estimator. Ann. Statist. 6 828-835. · Zbl 0408.62024 [9] Cai, T.T. and Low, M.G. (2015). A framework for estimation of convex functions. Statist. Sinica 25 423-456. · Zbl 1534.62033 [10] Chatterjee, S. (2014). A new perspective on least squares under convex constraint. Ann. Statist. 42 2340-2381. 10.1214/14-AOS1254 · Zbl 1302.62053 [11] Chatterjee, S. (2016). An improved global risk bound in concave regression. Electron. J. Stat. 10 1608-1629. 10.1214/16-EJS1151 · Zbl 1349.62126 [12] Chen, X. and Kato, K. (2019). Randomized incomplete \(U\)-statistics in high dimensions. Ann. Statist. 47 3127-3156. 10.1214/18-AOS1773 · Zbl 1435.62075 [13] Chen, X. and Kato, K. (2020). Jackknife multiplier bootstrap: Finite sample approximations to the \(U\)-process supremum with applications. Probab. Theory Related Fields 176 1097-1163. 10.1007/s00440-019-00936-y · Zbl 1439.62067 [14] Chen, Y. and Wellner, J.A. (2016). On convex least squares estimation when the truth is linear. Electron. J. Stat. 10 171-209. 10.1214/15-EJS1098 · Zbl 1332.62056 [15] Chernozhukov, V., Chetverikov, D. and Kato, K. (2014). Gaussian approximation of suprema of empirical processes. Ann. Statist. 42 1564-1597. 10.1214/14-AOS1230 · Zbl 1317.60038 [16] Chetverikov, D., Santos, A. and Shaikh, A.M. (2018). The econometrics of shape restrictions. Ann. Rev. Econ. 10 31-63. [17] De la Pena, V. and Giné, E. (2012). Decoupling: From Dependence to Independence. Berlin: Springer. [18] Diack, C.A.T. and Thomas-Agnan, C. (1998). A nonparametric test of the non-convexity of regression. J. Nonparametr. Stat. 9 335-362. 10.1080/10485259808832749 · Zbl 0954.62058 [19] Dümbgen, L. and Spokoiny, V.G. (2001). Multiscale testing of qualitative hypotheses. Ann. Statist. 29 124-152. 10.1214/aos/996986504 · Zbl 1029.62070 [20] Einmahl, U. and Mason, D.M. (2005). Uniform in bandwidth consistency of kernel-type function estimators. Ann. Statist. 33 1380-1403. 10.1214/009053605000000129 · Zbl 1079.62040 [21] Fama, E.F. and French, K.R. (1993). Common risk factors in the returns on stocks and bonds. J. Financ. Econ. 33 3-56. 10.1016/0304-405X(93)90023-5 · Zbl 1131.91335 [22] Fang, Z. and Seo, J. (2021). A projection framework for testing shape restrictions that form convex cones. Econometrica 89 2439-2458. 10.3982/ecta17764 · Zbl 07684923 [23] Frees, E.W. (1994). Estimating densities of functions of observations. J. Amer. Statist. Assoc. 89 517-525. · Zbl 0798.62051 [24] Ghosal, S., Sen, A. and van der Vaart, A.W. (2000). Testing monotonicity of regression. Ann. Statist. 28 1054-1082. 10.1214/aos/1015956707 · Zbl 1105.62337 [25] Giné, E. and Mason, D.M. (2007). On local \(U\)-statistic processes and the estimation of densities of functions of several sample variables. Ann. Statist. 35 1105-1145. 10.1214/009053607000000154 · Zbl 1175.60017 [26] Giné, E. and Nickl, R. (2016). Mathematical Foundations of Infinite-Dimensional Statistical Models. Cambridge Series in Statistical and Probabilistic Mathematics, 40. New York: Cambridge Univ. Press. 10.1017/CBO9781107337862 · Zbl 1358.62014 [27] Groeneboom, P., Jongbloed, G. and Wellner, J.A. (2001). Estimation of a convex function: Characterizations and asymptotic theory. Ann. Statist. 29 1653-1698. 10.1214/aos/1015345958 · Zbl 1043.62027 [28] Guntuboyina, A. and Sen, B. (2015). Global risk bounds and adaptation in univariate convex regression. Probab. Theory Related Fields 163 379-411. 10.1007/s00440-014-0595-3 · Zbl 1327.62255 [29] Guntuboyina, A. and Sen, B. (2018). Nonparametric shape-restricted regression. Statist. Sci. 33 568-594. 10.1214/18-STS665 · Zbl 1407.62135 [30] Gupta, P. and Bhattacharjee, G.P. (1984). An efficient algorithm for random sampling without replacement. In Foundations of Software Technology and Theoretical Computer Science (Bangalore, 1984). Lecture Notes in Computer Science 181 435-442. Berlin: Springer. 10.1007/3-540-13883-8_89 · Zbl 0554.65099 [31] Hall, P. (1991). On convergence rates of suprema. Probab. Theory Related Fields 89 447-455. 10.1007/BF01199788 · Zbl 0725.60024 [32] Han, Q. and Wellner, J.A. (2016). Multivariate convex regression: Global risk bounds and adaptation. ArXiv preprint. Available at arXiv:1601.06844. [33] Hannah, L.A. and Dunson, D.B. (2013). Multivariate convex regression with adaptive partitioning. J. Mach. Learn. Res. 14 3261-3294. · Zbl 1318.62225 [34] Hanson, D.L. and Pledger, G. (1976). Consistency in concave regression. Ann. Statist. 4 1038-1050. · Zbl 0341.62034 [35] Hildreth, C. (1954). Point estimates of ordinates of concave functions. J. Amer. Statist. Assoc. 49 598-619. · Zbl 0056.38301 · doi:10.2307/2281132 [36] Janson, S. (1984). The asymptotic distributions of incomplete \(U\)-statistics. Z. Wahrsch. Verw. Gebiete 66 495-505. 10.1007/BF00531887 · Zbl 0523.62022 [37] Juditsky, A. and Nemirovski, A. (2002). On nonparametric tests of positivity/monotonicity/convexity. Ann. Statist. 30 498-527. 10.1214/aos/1021379863 · Zbl 1012.62048 [38] Komarova, T. and Hidalgo, J. (2019). Testing nonparametric shape restrictions. ArXiv preprint. Available at arXiv:1909.01675. [39] Kuosmanen, T. (2008). Representation theorem for convex nonparametric least squares. Econom. J. 11 308-325. · Zbl 1141.91640 · doi:10.1111/j.1368-423X.2008.00239.x [40] Kur, G., Dagan, Y. and Rakhlin, A. (2019). Optimality of maximum likelihood for log-concave density estimation and bounded convex regression. ArXiv preprint. Available at arXiv:1903.05315. [41] Lee, S., Linton, O. and Whang, Y.-J. (2009). Testing for stochastic monotonicity. Econometrica 77 585-602. 10.3982/ECTA7145 · Zbl 1161.62080 [42] Lehmann, E.L. and Romano, J.P. (2006). Testing Statistical Hypotheses. New York: Springer. [43] Lim, E. and Glynn, P.W. (2012). Consistency of multidimensional convex regression. Oper. Res. 60 196-208. 10.1287/opre.1110.1007 · Zbl 1342.62064 [44] Mammen, E. (1991). Nonparametric regression under qualitative smoothness assumptions. Ann. Statist. 19 741-759. 10.1214/aos/1176348118 · Zbl 0737.62039 [45] Matzkin, R.L. (1991). Semiparametric estimation of monotone and concave utility functions for polychotomous choice models. Econometrica 59 1315-1327. 10.2307/2938369 · Zbl 0781.90009 [46] Mazumder, R., Choudhury, A., Iyengar, G. and Sen, B. (2019). A computational framework for multivariate convex regression and its variants. J. Amer. Statist. Assoc. 114 318-331. 10.1080/01621459.2017.1407771 · Zbl 1418.62122 [47] Murphy, K.M. and Welch, F. (1990). Empirical age-earnings profiles. J. Labor Econ. 8 202-229. [48] Nolan, D. and Pollard, D. (1987). \(U\)-processes: Rates of convergence. Ann. Statist. 15 780-799. 10.1214/aos/1176350374 · Zbl 0624.60048 [49] Nolan, D. and Pollard, D. (1988). Functional limit theorems for \(U\)-processes. Ann. Probab. 16 1291-1298. · Zbl 0665.60037 [50] Seijo, E. and Sen, B. (2011). Nonparametric least squares estimation of a multivariate convex regression function. Ann. Statist. 39 1633-1657. 10.1214/10-AOS852 · Zbl 1220.62044 [51] Sherman, R.P. (1994). Maximal inequalities for degenerate \(U\)-processes with applications to optimization estimators. Ann. Statist. 22 439-459. 10.1214/aos/1176325377 · Zbl 0798.60021 [52] Song, Y., Chen, X. and Kato, K. (2019). Approximating high-dimensional infinite-order \(U\)-statistics: Statistical and computational guarantees. Electron. J. Stat. 13 4794-4848. 10.1214/19-EJS1643 · Zbl 1434.62071 [53] Song, Y., Chen, X. Kato, K. (2023). Supplement to “Stratified incomplete local simplex tests for curvature of nonparametric multiple regression.” 10.3150/22-BEJ1459SUPP · Zbl 07634394 [54] van der Vaart, A.W. and Wellner, J.A. (1996). Weak Convergence and Empirical Processes with Applications to Statistics. Springer Series in Statistics. New York: Springer. 10.1007/978-1-4757-2545-2 · Zbl 0862.60002 [55] Wang, J.C. and Meyer, M.C. (2011). Testing the monotonicity or convexity of a function using regression splines. Canad. J. Statist. 39 89-107. 10.1002/cjs.10094 · Zbl 1349.62141 [56] Zhang, D. (2001). Bayesian bootstraps for \(U\)-processes, hypothesis tests and convergence of Dirichlet \(U\)-processes. Statist. Sinica 11 463-478 · Zbl 1036.62030 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.