×

Nonrecursive canonical basis computations for low rank Kashiwara crystals of type \(A\). (English) Zbl 1526.17012

Summary: We give an improved algorithm for the action of the divided power of a Chevalley basis element of an affine Lie algebra of type \(A\) on canonical basis elements satisfying an easily checked uniformity condition and compare calculation times for our algorithm against the standard algorithm. For symmetric Kashiwara crystals of affine type \(A\) and rank \(e=2\), and for the canonical basis elements that we call external, corresponding to weights on the outer skin of the Kashiwara crystal, we construct the canonical basis elements in a nonrecursive manner. In particular, for a symmetric crystal with \(\Lambda=a\Lambda_0+a\Lambda_1\), we give formulae for the canonical basis elements for all the \(e\)-regular multipartitions with defects either \(k(a-k)\) or \(k(a-k)+2a\), for \(0\leq k\leq a\).

MSC:

17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
17B37 Quantum groups (quantized enveloping algebras) and related deformations

Software:

SageMath

References:

[1] O. Amara-Omari and M. Schaps, “Unidirectional Littelmann paths for crystals of type \[a\] and rank 2”, Algebr. Represent. Theory 25:5 (2022), 1159-1195. · Zbl 1512.17006 · doi:10.1007/s10468-021-10063-9
[2] S. Ariki, V. Kreiman, and S. Tsuchioka, “On the tensor product of two basic representations of \[U_v(\widehat{\mathfrak{sl}}_e)\]”, Adv. Math. 218:1 (2008), 28-86. · Zbl 1205.17023 · doi:10.1016/j.aim.2007.11.018
[3] H. Arisha and M. Schaps, “Maximal strings in the crystal graph of spin representations of the symmetric and alternating groups”, Comm. Algebra 37:11 (2009), 3779-3795. · Zbl 1185.20011 · doi:10.1080/00927870802502654
[4] O. Barshevsky, M. Fayers, and M. Schaps, “A non-recursive criterion for weights of a highest-weight module for an affine Lie algebra”, Israel J. Math. 197:1 (2013), 237-261. · Zbl 1294.17018 · doi:10.1007/s11856-013-0031-x
[5] J. Chuang and R. Rouquier, “Derived equivalences for symmetric groups and \[\mathfrak{sl}_2\]-categorification”, Ann. of Math. (2) 167:1 (2008), 245-298. · Zbl 1144.20001 · doi:10.4007/annals.2008.167.245
[6] M. Fayers, “Weights of multipartitions and representations of Ariki-Koike algebras”, Adv. Math. 206:1 (2006), 112-144. · Zbl 1111.20009 · doi:10.1016/j.aim.2005.07.017
[7] M. Fayers, “An LLT-type algorithm for computing higher-level canonical bases”, J. Pure Appl. Algebra 214:12 (2010), 2186-2198. · Zbl 1267.17011 · doi:10.1016/j.jpaa.2010.02.021
[8] M. Fayers and M. Schaps, “A non-recursive criterion for weights of highest-weight modules for affine Lie algebras”, preprint, 2011.
[9] V. G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge Univ. Press, 1990. · Zbl 0716.17022 · doi:10.1017/CBO9780511626234
[10] M. Kashiwara, “The crystal base and Littelmann’s refined Demazure character formula”, Duke Math. J. 71:3 (1993), 839-858. · Zbl 0794.17008 · doi:10.1215/S0012-7094-93-07131-1
[11] A. Kleshchev, “Representation theory of symmetric groups and related Hecke algebras”, Bull. Amer. Math. Soc. (N.S.) 47:3 (2010), 419-481. · Zbl 1220.20008 · doi:10.1090/S0273-0979-09-01277-4
[12] A. Lascoux, B. Leclerc, and J.-Y. Thibon, “Hecke algebras at roots of unity and crystal bases of quantum affine algebras”, Comm. Math. Phys. 181:1 (1996), 205-263. · Zbl 0874.17009 · doi:10.1007/BF02101678
[13] P. Littelmann, “Paths and root operators in representation theory”, Ann. of Math. (2) 142:3 (1995), 499-525. · Zbl 0858.17023 · doi:10.2307/2118553
[14] A. Mathas, “Simple modules of Ariki-Koike algebras”, pp. 383-396 in Group representations: cohomology, group actions and topology (Seattle, WA, 1996), edited by A. Adem et al., Proc. Sympos. Pure Math. 63, American Mathematical Society, Providence, RI, 1998. · Zbl 0899.20004 · doi:10.1090/pspum/063/1603195
[15] A. Mathas, Iwahori-Hecke algebras and Schur algebras of the symmetric group, University Lecture Series 15, American Mathematical Society, Providence, RI, 1999. · Zbl 0940.20018 · doi:10.1090/ulect/015
[16] O. Omari and M. Schaps, “External vertices for crystals of type \[A\]”, preprint, 2021.
[17] B. E. Sagan, The symmetric group: Representations, combinatorial algorithms, and symmetric functions, 2nd ed., Graduate Texts in Mathematics 203, Springer, New York, 2001. · Zbl 0964.05070 · doi:10.1007/978-1-4757-6804-6
[18] SageMath, version 9.1, available at https://www.sagemath.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.