Fila, Marek Boundedness of global solutions of nonlinear diffusion equations. (English) Zbl 0764.35010 J. Differ. Equations 98, No. 2, 226-240 (1992). This paper deals with large time behaviour of solutions of Dirichlet- initial value problems for the equation \(u_ t=\Delta(| u|^{m- 1}u)+f(u)\) when \(f\) grows superlinearly. In particular the question of global existence without uniform a priori bounds is examined. The case when \(m=1\) and \(f\) is allowed to grow exponentially is of particular concern and it is shown that global existence without uniform bounds is impossible in one and two dimensions. Reviewer: J.F.Toland (Bath) Cited in 1 ReviewCited in 33 Documents MSC: 35B35 Stability in context of PDEs 35K15 Initial value problems for second-order parabolic equations 35K55 Nonlinear parabolic equations 35K05 Heat equation Keywords:blow-up; large time behaviour; Dirichlet-initial value problems; global existence × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Aronson, D. G.; Crandall, M. G.; Peletier, L. A., Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Anal. TMA, 6, 1001-1022 (1982) · Zbl 0518.35050 [2] Berger, M. S., Nonlinearity and Functional Analysis (1977), Academic Press: Academic Press New York · Zbl 0368.47001 [3] Cazenave, T.; Lions, M. L., Solutions globales d’équations de la chaleur demilinéaires, Comm. Partial Differential Equations, 9, 955-978 (1984) · Zbl 0555.35067 [4] Filo, J., On solutions of perturbed fast diffusion equations, Appl. Mat., 32, 364-380 (1987) · Zbl 0652.35064 [5] Filo, J., \(L^∞\)-Estimate for nonlinear diffusion equations, Appl. Anal., 37, 49-61 (1990) · Zbl 0678.35058 [6] Fujita, H., On the nonlinear equations \(Δu + e^u = 0 and∂v∂t = Δv + e^v\), Bull. Amer. Math. Soc., 75, 132-135 (1969) · Zbl 0216.12101 [7] Gelfand, M., AMS Transl. (2), 29, 295-381 (1963), English transl. · Zbl 0127.04901 [8] Giga, Y., A bound for global solutions of semilinear heat equations, Comm. Math. Phys., 103, 415-421 (1986) · Zbl 0595.35057 [9] Henry, D., Geometric Theory of Semilinear Parabolic Equations, (Lecture Notes in Mathematics, Vol. 840 (1981), Springer-Verlag: Springer-Verlag New York) · Zbl 0456.35001 [10] Langlais, M.; Phillips, D., Stabilization of solutions of nonlinear and degenerate evolution equations, Nonlinear Anal. TMA, 9, 321-333 (1985) · Zbl 0583.35059 [11] Levine, H. A.; Sacks, P. E., Some existence and nonexistence theorems for solutions of degenerate parabolic equations, J. Differential Equations, 52, 135-161 (1984) · Zbl 0487.34003 [12] Nakao, M., \(L^p\)-Estimates of solutions of some nonlinear degenerate diffusion equations, J. Math. Soc. Japan, 37, 41-63 (1985) · Zbl 0569.35051 [13] Ni, W. M.; Sacks, P. E.; Tavantzis, J., On the asymptotic behavior of solutions of certain quasilinear equations of parabolic type, J. Differential Equations, 54, 97-120 (1984) · Zbl 0565.35053 [14] Payne, L. E.; Sattinger, D. H., Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22, 273-303 (1975) · Zbl 0317.35059 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.